

ENERGY CONSERVATION

1.2 Energy Conservation

Applicability and Approach	18
Energy Management Programs	18
Energy Efficiency	18 19
Heating Load Reduction	19
Heat Distribution Systems	19
Energy Conversion System Efficiency Improv Process Cooling	
Load Reduction	21
Energy Conversion	21
Refrigerant Compression Efficiency	23
Refrigeration System Auxiliaries	23
Compressed Air Systems	24
Load reduction	24
Distribution	24

Applicability and Approach

This guideline applies to facilities or projects that consume energy in process heating and cooling; process and auxiliary systems, such as motors, pumps, and fans; compressed air systems and heating, ventilation and air conditioning systems (HVAC); and lighting systems. It complements the industry-specific emissions guidance presented in the Industry Sector Environmental, Health, and Safety (EHS) Guidelines by providing information about common techniques for energy conservation that may be applied to a range of industry sectors.

Energy management at the facility level should be viewed in the context of overall consumption patterns, including those associated with production processes and supporting utilities, as well as overall impacts associated with emissions from power sources. The following section provides guidance on energy management with a focus on common utility systems often representing technical and financially feasible opportunities for improvement in energy conservation. However, operations

should also evaluate energy conservation opportunities arising from manufacturing process modifications.

Energy Management Programs

Energy management programs should include the following elements:

- Identification, and regular measurement and reporting of principal energy flows within a facility at unit process level
- Preparation of mass and energy balance;
- Definition and regular review of energy performance targets, which are adjusted to account for changes in major influencing factors on energy use
- Regular comparison and monitoring of energy flows with performance targets to identify where action should be taken to reduce energy use
- Regular review of targets, which may include comparison with benchmark data, to confirm that targets are set at appropriate levels

Energy Efficiency

For any energy-using system, a systematic analysis of energy efficiency improvements and cost reduction opportunities should include a hierarchical examination of opportunities to:

- Demand/Load Side Management by reducing loads on the energy system
- Supply Side Management by:
 - o Reduce losses in energy distribution
 - o Improve energy conversion efficiency
 - Exploit energy purchasing opportunities
 - o Use lower-carbon fuels

ENERGY CONSERVATION

Common opportunities in each of these areas are summarized below. 32

Process Heating

Process heating is vital to many manufacturing processes, including heating for fluids, calcining, drying, heat treating, metal heating, melting agglomeration, curing, and forming³³.

In process heating systems, a system heat and mass balance will show how much of the system's energy input provides true process heating, and quantify fuel used to satisfy energy losses caused by excessive parasitic loads, distribution, or conversion losses. Examination of savings opportunities should be directed by the results of the heat and mass balance, though the following techniques are often valuable and cost-effective.

Heating Load Reduction

- Ensure adequate insulation to reduce heat losses through furnace/oven etc. structure
- Recover heat from hot process or exhaust streams to reduce system loads
- In intermittently-heated systems, consider use of low thermal mass insulation to reduce energy required to heat the system structure to operating temperature
- Control process temperature and other parameters accurately to avoid, for example, overheating or overdrying
- Examine opportunities to use low weight and/or low thermal mass product carriers, such as heated shapers, kiln cars etc.

- Review opportunities to schedule work flow to limit the need for process reheating between stages
- Operate furnaces/ovens at slight positive pressure, and maintain air seals to reduce air in-leakage into the heated system, thereby reducing the energy required to heat unnecessary air to system operating temperature
- Reduce radiant heat losses by sealing structural openings and keep viewing ports closed when not in use
- Where possible, use the system for long runs close to or at operating capacity
- Consider use of high emissivity coatings of high temperature insulation, and consequent reduction in process temperature
- Near net weight and shape heat designs
- Robust Quality assurance on input material
- Robust Scheduled maintenance programs

Heat Distribution Systems

Heat distribution in process heating applications typically takes place through steam, hot water, or thermal fluid systems.

Losses can be reduced through the following actions:

- Promptly repair distribution system leaks
- Avoid steam leaks despite a perceived need to get steam
 through the turbine. Electricity purchase is usually cheaper
 overall, especially when the cost to treat turbine-quality
 boiler feed water is included. If the heat-power ratio of the
 distribution process is less than that of power systems,
 opportunities should be considered to increase the ratio; for
 example, by using low-pressure steam to drive absorption
 cooling systems rather than using electrically-driven vaporcompression systems.
- Regularly verify correct operation of steam traps in steam systems, and ensure that traps are not bypassed. Since

http://www.eere.energy.gov/consumer/industry/process.html).

³² Additional guidance on energy efficiency is available from sources such as Natural Resources Canada (NRCAN)

http://oee.nrcan.gc.ca/commercial/financial-assistance/new-buildings/mnecb.cfm?attr=20); the European Union (EUROPA. http://europa.eu.int/scadplus/leg/en/s15004.htm), and United States Department of Energy (US DOE,

³³ US DOE. http://www.eere.energy.gov/consumer/industry/process.html

ENERGY CONSERVATION

steam traps typically last approximately 5 years, 20% should be replaced or repaired annually

- Insulate distribution system vessels, such as hot wells and de-aerators, in steam systems and thermal fluid or hot water storage tanks
- Insulate all steam, condensate, hot water and thermal fluid distribution pipework, down to and including 1" (25 mm) diameter pipe, in addition to insulating all hot valves and flanges
- In steam systems, return condensate to the boiler house for re-use, since condensate is expensive boiler-quality water and valuable beyond its heat content alone
- Use flash steam recovery systems to reduce losses due to evaporation of high-pressure condensate
- Consider steam expansion through a back-pressure turbine rather than reducing valve stations
- Eliminate distribution system losses by adopting point-ofuse heating systems

Energy Conversion System Efficiency Improvements

The following efficiency opportunities should be examined for process furnaces or ovens, and utility systems, such as boilers and fluid heaters:

- Regularly monitor CO, oxygen or CO2 content of flue gases to verify that combustion systems are using the minimum practical excess air volumes
- Consider combustion automation using oxygen-trim controls
- Minimize the number of boilers or heaters used to meet loads. It is typically more efficient to run one boiler at 90% of capacity than two at 45%. Minimize the number of boilers kept at hot-standby
- Use flue dampers to eliminate ventilation losses from hot boilers held at standby

- Maintain clean heat transfer surfaces; in steam boilers, flue gases should be no more than 20 K above steam temperature)
- In steam boiler systems, use economizers to recover heat from flue gases to pre-heat boiler feed water or combustion air
- Consider reverse osmosis or electrodialysis feed water treatment to minimize the requirement for boiler blowdown
- Adopt automatic (continuous) boiler blowdown
- Recover heat from blowdown systems through flash steam recovery or feed-water preheat
- Do not supply excessive quantities of steam to the deaerator
- With fired heaters, consider opportunities to recover heat to combustion air through the use of recuperative or regenerative burner systems
- For systems operating for extended periods (> 6000 hours/year), cogeneration of electrical power, heat and /or cooling can be cost effective
- Oxy Fuel burners
- Oxygen enrichment/injection
- Use of turbolators in boilers
- Sizing design and use of multiple boilers for different load configurations
- Fuel quality control/fuel blending

Process Cooling

The general methodology outlined above should be applied to process cooling systems. Commonly used and cost-effective measures to improve process cooling efficiency are described below.

ENERGY CONSERVATION

Load Reduction

- Ensure adequate insulation to reduce heat gains through cooling system structure and to below-ambient temperature refrigerant pipes and vessels
- Control process temperature accurately to avoid overcooling
- Operate cooling tunnels at slight positive pressure and maintain air seals to reduce air in-leakage into the cooled system, thus reducing the energy required to cool this unnecessary air to system operating temperature
- Examine opportunities to pre-cool using heat recovery to a process stream requiring heating, or by using a higher temperature cooling utility
- In cold and chill stores, minimize heat gains to the cooled space by use of air curtains, entrance vestibules, or rapidly opening/closing doors. Where conveyors carry products into chilled areas, minimize the area of transfer openings, for example, by using strip curtains
- Quantify and minimize "incidental" cooling loads, for example, those due to evaporator fans, other machinery, defrost systems and lighting in cooled spaces, circulation fans in cooling tunnels, or secondary refrigerant pumps (e.g. chilled water, brines, glycols)
- Do not use refrigeration for auxiliary cooling duties, such as compressor cylinder head or oil cooling
- While not a thermal load, ensure there is no gas bypass of the expansion valve since this imposes compressor load while providing little effective cooling
- In the case of air conditioning applications, energy efficiency techniques include:
 - Placing air intakes and air-conditioning units in cool, shaded locations
 - Improving building insulation including seals, vents, windows, and doors

- Planting trees as thermal shields around buildings
- Installing timers and/or thermostats and/or enthalpy-based control systems
- Installing ventilation heat recovery systems³⁴

Energy Conversion

The efficiency of refrigeration service provision is normally discussed in terms of Coefficient of Performance ("COP"), which is the ratio of cooling duty divided by input power. COP is maximized by effective refrigeration system design and increased refrigerant compression efficiency, as well as minimization of the temperature difference through which the system works and of auxiliary loads (i.e. those in addition to compressor power demand) used to operate the refrigeration system.

System Design

- If process temperatures are above ambient for all, or part, of the year, use of ambient cooling systems, such as provided by cooling towers or dry air coolers, may be appropriate, perhaps supplemented by refrigeration in summer conditions.
- Most refrigeration systems are electric-motor driven vapor compression systems using positive displacement or centrifugal compressors. The remainder of this guideline relates primarily to vapor-compression systems. However, when a cheap or free heat source is available (e.g. waste heat from an engine-driven generator—low-pressure steam

APRIL 30, 2007 21

³⁴ More information on HVAC energy efficiency can be found at the British Columbia Building Corporation (Woolliams, 2002.

http://www.greenbuildingsbc.com/new_buildings/pdf_files/greenbuild_strategi es_guide.pdf), NRCAN's EnerGuide

⁽http://oee.nrcan.gc.ca/equipment/english/index.cfm?PrintView=N&Text=N) and NRCAN's Energy Star Programs

⁽http://oee.nrcan.gc.ca/energystar/english/consumers/heating.cfm?text=N&pri ntview=N#AC), and the US Energy Star Program (http://www.energystar.gov/index.cfm?c=guidelines.download_guidelines).

ENERGY CONSERVATION

that has passed through a back-pressure turbine), absorption refrigeration may be appropriate.

- Exploit high cooling temperature range: precooling by ambient and/or 'high temperature' refrigeration before final cooling can reduce refrigeration capital and running costs.
 High cooling temperature range also provides an opportunity for countercurrent (cascade) cooling, which reduces refrigerant flow needs.
- Keep 'hot' and 'cold' fluids separate, for example, do not mix water leaving the chiller with water returning from cooling circuits.
- In low-temperature systems where high temperature differences are inevitable, consider two-stage or compound compression, or economized screw compressors, rather than single-stage compression.

Minimizing Temperature Differences

A vapor-compression refrigeration system raises the temperature of the refrigerant from somewhat below the lowest process temperature (the evaporating temperature) to provide process cooling, to a higher temperature (the condensing temperature), somewhat above ambient, to facilitate heat rejection to the air or cooling water systems. Increasing evaporating temperature typically increases compressor cooling capacity without greatly affecting power consumption. Reducing condensing temperature increases evaporator cooling capacity and substantially reduces compressor power consumption.

Elevating Evaporating Temperature

 Select a large evaporator to permit relatively low temperature differences between process and evaporating temperatures. Ensure that energy use of auxiliaries (e.g. evaporator fans) does not outweigh compression savings.
 In air-cooling applications, a design temperature difference of 6-10 K between leaving air temperature and evaporating

- temperature is indicative of an appropriately sized evaporator. When cooling liquids, 2K between leaving liquid and evaporating temperatures can be achieved, though a 4K difference is generally indicative of a generously-sized evaporator.
- Keep the evaporator clean. When cooling air, ensure correct defrost operation. In liquid cooling, monitor refrigerant/process temperature differences and compare with design expectations to be alert to heat exchanger contamination by scale or oil.
- Ensure oil is regularly removed from the evaporator, and that oil additions and removals balance.
- Avoid the use of back-pressure valves.
- Adjust expansion valves to minimize suction superheat consistent with avoidance of liquid carry-over to compressors.
- Ensure that an appropriate refrigerant charge volume is present.

Reducing Condensing Temperature

- Consider whether to use air-cooled or evaporation-based cooling (e.g. evaporative or water cooled condensers and cooling towers). Air-cooled evaporators usually have higher condensing temperatures, hence higher compressor energy use, and auxiliary power consumption, especially in low humidity climates. If a wet system is used, ensure adequate treatment to prevent growth of *legionella* bacteria.
- Whichever basic system is chosen, select a relatively large condenser to minimize differences between condensing and the heat sink temperatures. Condensing temperatures with air cooled or evaporative condensers should not be more than 10K above design ambient condition, and a 4K approach in a liquid-cooled condenser is possible.

ENERGY CONSERVATION

- Avoid accumulation of non-condensable gases in the condenser system. Consider the installation of refrigerated non-condensable purgers, particularly for systems operating below atmospheric pressure.
- Keep condensers clean and free from scale. Monitor refrigerant/ambient temperature differences and compare with design expectations to be alert to heat exchanger contamination.
- Avoid liquid backup, which restricts heat transfer area in condensers. This can be caused by installation errors such as concentric reducers in horizontal liquid refrigerant pipes, or "up and over" liquid lines leading from condensers.
- In multiple condenser applications, refrigerant liquid lines should be connected via drop-leg traps to the main liquid refrigerant line to ensure that hot gases flow to all condensers.
- Avoid head pressure control to the extent possible. Head pressure control maintains condensing temperature at, or near, design levels. It therefore prevents reduction in compressor power consumption, which accompanies reduced condensing temperature, by restricting condenser capacity (usually by switching off the condenser, or cooling tower fans, or restricting cooling water flow) under conditions of less severe than design load or ambient temperature conditions. Head pressure is often kept higher than necessary to facilitate hot gas defrost or adequate liquid refrigerant circulation. Use of electronic rather than thermostatic expansion valves, and liquid refrigerant pumps can permit effective refrigerant circulation at much reduced condensing temperatures.
- Site condensers and cooling towers with adequate spacing so as to prevent recirculation of hot air into the tower.

Refrigerant Compression Efficiency

- Some refrigerant compressors and chillers are more efficient than others offered for the same duty. Before purchase, identify the operating conditions under which the compressor or chiller is likely to operate for substantial parts of its annual cycle. Check operating efficiency under these conditions, and ask for estimates of annual running cost. Note that refrigeration and HVAC systems rarely run for extended periods at design conditions, which are deliberately extreme. Operational efficiency under the most commonly occurring off-design conditions is likely to be most important.
- Compressors lose efficiency when unloaded. Avoid
 operation of multiple compressors at part-load conditions.
 Note that package chillers can gain coefficient of
 performance (COP) when slightly unloaded, as loss of
 compressor efficiency can be outweighed by the benefits of
 reduced condensing and elevated evaporating
 temperature. However, it is unlikely to be energy efficient
 to operate a single compressor-chiller at less than 50% of
 capacity.
- Consider turndown efficiency when specifying chillers.
 Variable speed control or multiple compressor chillers can be highly efficient at part loads.
- Use of thermal storage systems (e.g., ice storage) can avoid the need for close load-tracking and, hence, can avoid part-loaded compressor operation.

Refrigeration System Auxiliaries

Many refrigeration system auxiliaries (e.g. evaporator fans and chilled water pumps) contribute to refrigeration system load, so reductions in their energy use have a double benefit. General energy saving techniques for pumps and fans, listed in the next section of these guidelines, should be applied to refrigeration auxiliaries.

ENERGY CONSERVATION

Additionally, auxiliary use can be reduced by avoidance of partload operation and in plant selection (e.g. axial fan evaporative condensers generally use less energy than equivalent centrifugal fan towers).

Under extreme off-design conditions, reduction in duty of cooling system fans and pumps can be worthwhile, usually when the lowest possible condensing pressure has been achieved.

Compressed Air Systems

Compressed air is the most commonly found utility service in industry, yet in many compressed air systems, the energy contained in compressed air delivered to the user is often 10% or less of energy used in air compression. Savings are often possible through the following techniques:

Load reduction

- Examine each true user of compressed air to identify the air volume needed and the pressure at which this should be delivered.
- Do not mix high volume low pressure and low volume high pressure loads. Decentralize low volume high-pressure applications or provide dedicated low-pressure utilities, for example, by using fans rather than compressed air.
- Review air use reduction opportunities, for example:
 - Use air amplifier nozzles rather than simple open-pipe compressed air jets
 - Consider whether compressed air is needed at all
 - Where air jets are required intermittently (e.g. to propel product), consider operating the jet via a process-related solenoid valve, which opens only when air is required
 - Use manual or automatically operated valves to isolate air supply to individual machines or zones that are not in continuous use

- Implement systems for systematic identification and repair of leaks
- All condensate drain points should be trapped. Do not leave drain valves continuously 'cracked open'
- Train workers never to direct compressed air against their bodies or clothing to dust or cool themselves down.

Distribution

- Monitor pressure losses in filters and replace as appropriate
- Use adequately sized distribution pipework designed to minimize pressure losses