ADVANCING SUSTAINABLE HYDROPOWER: BIODIVERSITY ASSESSMENT AND MANAGEMENT WEBINAR SERIES

> INTRODUCING THE TRISHULI ASSESSMENT TOOL

> > **February 2, 2021**

Creating Markets, Creating Opportunities

IN PARTNERSHIP WITH

Australian Aid 🔶

Dr. Leeanne Alonso Dr. Deep Narayan Shah

Introduction and Housekeeping

Kate Lazarus Senior Asia ESG Advisory Lead IFC

19:00 - 19:05	Welcome and Housekeeping	Kate Lazarus Senior Asia ESG Advisory Lead IFC
19:05 - 19:10	Welcome remarks	Jan Erik Studsrød, Counsellor/Energy and Climate Royal Norwegian Embassy, Nepal
19:10 - 20:00	Introducing the Trishuli Assessment Tool	Leeanne Alonso Biodiversity Consultant, IFC Deep Narayan Shah Associate Professor, Tribhuvan University, Nepal
20:00 - 20:30	Q & A	Moderator: Kate Lazarus Senior Asia ESG Advisory Lead IFC

Welcome Remarks

Jan Erik Studsrød, Counsellor/Energy and Climate Royal Norwegian Embassy, Nepal

Introducing the Trishuli Assessment Tool

Presenters:

Leeanne Alonso

Biodiversity Consultant, IFC leeannealonso@yahoo.com **Deep Narayan Shah**

Assistant Professor

Tribhuvan University, Nepal

Outline of the Presentation

- What is the Trishuli Assessment Tool
- Need for the Trishuli Assessment Tool
- Development of the Trishuli Assessment Tool
- Field Methods of the Trishuli Assessment Tool
- Sampling Design and Data Analysis
- Next Steps for the Trishuli Assessment Tool

What is the Trishuli Assessment Tool

Trishuli Assessment Tool

Methodology for Standardized Sampling of Aquatic Biodiversity to Monitor Population Trends over Time

To be used to:

- Establish an Aquatic Biodiversity Baseline for ESIA
- Collect data for Environmental Flows (EFlows) Assessment
- Monitor the the impacts of Hydropower (or other impacts) on Aquatic Biodiversity

Need for the Trishuli Assessment Tool

Why is the Trishuli Assessment Tool needed?

- Paucity of data on aquatic biodiversity in Nepal
- Lack of efficient, practical and cost effective list of methods
- Availability of required equipment
- Use of different methods in different ESIA surveys- results incomparable and inconsistent
- Sampling sites and effort for ESIAs are variable and usually minimum

✓ To meet international standards, for science and lenders (No Net Loss)
 ✓ Importance of Aquatic Biodiversity Data for ESIA and monitoring

Why is the Trishuli Assessment Tool needed?

World Bank study of 50 operating Hydropower projects in Nepal (2020) found that:

- Most HPPs that began operation before 2000 AD have not done any environment impact studies (IEE/EIA) and thus have no mitigation measures in place
- The aquatic biodiversity mitigation measures committed in the IEE/EIA report are not generally implemented
- Lack of aquatic biodiversity monitoring by any HPP in Nepal
- A strong aquatic biodiversity baseline is needed to develop and promote biodiversity mitigation

 ✓ Environmental Flows (EFlows): Only 3 of the 50 HPPs release EFlows during the dry season
 ✓ Aquatic Habitat: None of the HPPs have carried out any aquatic habitat mitigation
 ✓ Fish Migration: Among the 50 HPPs surveyed, 12 HPPs (24%) have constructed fish ladders but only 1 has been monitored (Khimti HPP)

10

Development of the Trishuli Assessment Tool



Trishuli River Basin

IFC has interest in the Trishuli River Basin in Nepal due to funding of the Upper Trishuli - 1 HPP

RIVER BASIN, NEPAL

IN PARTNERSHIP WITH

https://www.ifc.org/wps/wcm/connect/topics_ext_content/ifc_external_corporate_site /sustainability-at-ifc/publications/publications_report_cia-trishuli

Finance Corporation

WORLD BANK GROUP

Fish Studies in the Trishuli Basin

- 60 species of fish reported for the basin (Rajbanshi 2002)
- Additional field research by NESS (2012, 2013, and 2014-2016) and SWECO (2016) for Upper Trishuli-1 HPP ESIA: 7-8 species recorded per survey
- Sampling for Cumulative Impact Assessment at 7 sites in the basin (2018), including eDNA
 25 species recorded by eDNA

Golden Mahaseer, *Tor putitora*

Common Snow Trout, *Schizothorax richardsonii*

¹⁷ Other fish species from the Trishuli River Basin

Creating Markets, Creating Opportunities

Our Shared Goal for Trishuli River and other Nepal rivers:

Sustainable Hydropower Development that maintains a Healthy Aquatic Ecosystem and Biodiversity

To meet this Goal, we need to:

- 1) Obtain a Better Understanding of the Aquatic Ecosystem and Biodiversity, and
- 2) Follow up with Long-term monitoring of the status of the Aquatic Ecosystem

Considerations

Balancing between the Best Methods and Practicalities – It is Possible!

- **Requirements:** Nepal ESIA, International Lenders' Standards
- Time: Developer's timelines, pre-construction baseline
- **Cost**: Personnel, travel, equipment, data analysis
- Expertise/knowledge: Training, experience
- Equipment: Availability, maintenance
- Permits: Research, specimen collections, protected areas, electrofishing
- **Safety:** Access to sampling sites, equipment

Trishuli Assessment Tool Workshop November 2019

Creating Markets, Creating Opportunities

Workshop Participants

International fish researchers with expertise in fish sampling and monitoring

Nepalese fish researchers with expertise in sampling Nepali rivers and habitats

Hydropower project staff with expertise in Trishuli River environment and HPP design

Government departments staff with expertise in regulations, monitoring, EIAs

Workshop Participants

- 1. Dr. David Philipp, Trishuli consulting team
- 2. Julie Claussen, Trishuli consulting team
- 3. Bill Beaumont, Trishuli consulting team
- 4. Adrian Pinder, Trishuli consulting team
- 5. Gina Walsh, Trishuli consulting team
- 6. Adarsh Man Sherchan, Center for Molecular Dynamics Nepal (CMDN)
- 7. Dibesh Karmacharya, Center for Molecular Dynamics Nepal (CMDN)
- 8. Nikita Pradhan, Center for Molecular Dynamics Nepal (CMDN)
- 9. Raj Kapur Napit, Nepal Environmental and Social Services (NESS)
- 10. Rakesh Yadav, Nepal Environmental and Social Services (NESS)
- 11. Dr. Deep Narayan Shah, Central Department of Environmental Science, Tribhuvan University
- 12. Dr. Ram Devi Tachamo Shah, Aquatic Ecology Centre, Kathmandu University
- 13. Dr. Subohd Sharma, Kathmandu University
- 14. Dr. Bibhuti Ranjan Jha, Kathmandu University
- 15. Suresh Wagle, United States Agency for International Development (USAID) Paani Program
- 16. Asha Raymajhi, National Fisheries Research Centre (NFRC), MA&LD
- 17. Anjana Shrestha, National Fisheries Research Centre (NFRC), MA&LD
- 18. Dr. Tek Gurung, National Agricultural Research Center Council (NARC)
- 19. Janak Kumar Jha, Water and Energy Commission Secretariat (WECS)
- 20. Milan Dhungana, Ministry of Forest and Environment (MoFE)
- 21. Nurendra Aryal, Nepal Department of National Parks and Wildlife Conservation, MoFE
- 22. Tara Datt Bhatt, Nepal Energy Authority (NEA) Training Center, Kharipati
- 23. Prakash Gaudel, Environmental and Social Studies Department, NEA
- 24. Baburaja Maharjan, Trishuli HPP (NEA)
- 25. Ashok Baniya, NWEDC Upper Trishuli 1 (UT-1) HPP
- 26. Auras Bhandari, NWEDC Upper Trishuli 1 (UT-1) HPP
- 27. Shankar Pyakurel, Upper Trishuli 3B (UT-3B) HPP (Trishuli hydropower Company)
- 28. Umesh Pathak, Upper Sanjen HPP
- 29. Rabindra Timilsina, Swet Ganga Hydropower & Construction Ltd.
- 30. Dr. Leeanne Alonso, International Finance Corporation (IFC)
- 31. Mark Pedersen, International Finance Corporation (IFC)

Goals of the Trishuli Assessment Tool Workshop

Evaluate Field Methods for Sampling Aquatic Biodiversity

Develop a Robust Standardized Methodology for sampling fish and macroinvertebrates

- For ESIA baselines and Long-term monitoring
- = Trishuli Assessment Tool

Standardized Methodology for monitoring fish

- Adult migrations (where are they moving?) (Webinar March 16)
- Fish ladder efficiency (Webinars March 16 and April 6)

Targets for Data Collection with the Trishuli Assessment Tool

1. Overall Aquatic Biodiversity

Composition (species list)

species

24

individuals of selected species

2. Snow Trout adults and juveniles (Schizothorax richardsonii)

individuals

Distribution/locations

Size/weight/gender/reproductive status

3. Golden Mahaseer adults and juveniles (Tor putitora)

individuals

Distribution/locations

Size/weight/gender/reproductive status

4. Macroinvertebrates and Periphyton

Key Taxa

Functional Groups/ Key Indices

Field methods evaluated at workshop

- 1. Backpack electrofishing
- 2. Boat/Raft electrofishing
- 3. Gill Nets
- 4. Seine Nets
- 5. Dip Nets
- 6. Cast Nets
- 7. Traps Baited
- 8. Trot Lines Baited
- 9. Bamboo Traps
- 10. Underwater video (Go-Pro Camera)
- 11. Angling
- 12. eDNA
- 13. Macroinvertebrate sampling
- 14. Periphyton sampling

Evaluated field methods according to:

Targets

- Biodiversity (overall biodiversity)
- Snow Trout (adults, juveniles, movement)
- Golden Mahseer (adults, juveniles, movement)
- Macroinvertebrates and Periphyton

River Habitat/Location

- Tributaries (Large and small)
- Main River Channel
- Upstream and Downstream of Hydropower project
- Altered Environments (e.g. HPP reservoir, diversion reach)

Sampling design and data metrics

Working Groups

27

²⁸ Evaluation of Field Methods for Fish

SAMPLING Metho	odology										
Tributaries											-
RA - Relative Abundance and P/A = Presence /Absence											
	Back Pack Electrofishing	Raft Electrofishing	Gill Nets	Trap Nets (Baited)	Seines	Trot Lines (Baited/Snares)	Dip Nets	Visual	eDNA	Angling tea	r
Sampling Targets											
Biodiversity	*** Excellent in all various habitats	*Not possible	*limited to shoreline area, but damaging to fish	*Not possible	*** Kick seines excellent in all shallow habitats	* Biased sampling, carnivorous only	*** only samples fry, restrcited to shallows	*** Excellent for snorkle surveys and go-pros	*** Excellent for P/A information	* Very low biased to l	
Mahseer - Adult- RA	* Success unlikely	*Not possible	*Not possible	*Not possible	*Success unlikely	*Success unlikely	*Not possible	*Success unlikely	*** Excellent for P/A , but cant distinguish adult vs juveniles	*Success u	r
Mahseer - Adult Movement	*Not possible	*Not possible	*Not possible	*Not possible	*Not possible	*Not possible	*Not possible	*Not possible	*Not possible	*Not possi	Ł
Mahseer Juvenile - RA	** Probably excellent in all various habitats	* Not possible	* limited to shoreline area, but damaging to fish	*Not possible	*** Kick seines excellent in all shallow habitats	*Success unlikely	*** only samples fry, restrcited to shallows	*** Excellent for snorkle surveys and go-pros	*** Excellent for P/A , but cant distinguish adult vs juveniles	*Not possi	Ł
Snow Trout - Adult- RA	* Only potentially accessible	*Not possible	*Not possible	*Not possible	* only potentially accessible	*Success unlikely	*Not possible	*Success unlikely	*** Excellent for P/A , but cant distinguish adult vs juveniles	*Success u	r
Snow Trout - Adult Movement	*Not possible	*Not possible	*Not possible	*Not possible	*Not possible	*Not possible	*Not possible	*Not possible	*Not possible	*Not possi	ł
Snow Trout Juvenile - RA	** Limited to shoreline, shallows/riffles only	* Not possible	* limited to shoreline area, but damaging to fish	*Not possible	*** Kick seines excellent in all shallow habitats	* Success unlikely	*** only samples fry, restrcited to shallows	*** Excellent for snorkle surveys and go-pros	*** Excellent for P/A , but cant distinguish adult vs juveniles	*Not possi	Ł
											-
Specific Details											_
Relative cost	** Initial high purchase cost, low maintenance	** Initial high purchase cost, low maintenance	*** Low Cost	*** Low Cost	*** Low Cost	*** Low Cost	*** Low Cost	*** Low Cost	* Medium sampling, high lab costs	** Medium equipment	
				*** 1-2 person							Opp

Trishuli Assessment Tool Field Methods

Field methods evaluated at workshop:

- 1. Backpack electrofishing
- 2. Boat/Raft electrofishing
- 3. Gill Nets
- 4. Seine Nets
- 5. Dip Nets
- 6. Cast Nets
- 7. Traps Baited
- 8. Trot Lines Baited
- 9. Bamboo Traps
- **10. Underwater Video (Go-Pro)**
- **11.Angling**
- 12.eDNA
- **13. Macroinvertebrate sampling**
- 14. Periphyton sampling

Field methods selected for Tool:

- Backpack Electrofishing
- Cast Nets
- Dip Nets
- Underwater Video (Go-Pro camera)
- eDNA
- Macroinvertebrate Sampling
- Periphyton Sampling

³⁰ Trishuli Assessment Tool Field Methods

Backpack Electrofishing

Cast Net

Dip Net

Visual Asessment with Underwater Camera

Environmental DNA

Macroinvertebrate and Periphyton Sampling

Trishuli Assessment Tool field methods

TARGET	TRIBUTARIES	MAINSTEM		
Aquatic Biodiversity	 Macroinvertebrates & Periphyton (Kathmandu University protocol) Fish EDNA Backpack electrofishing Cast nets Underwater video Dip nets 	 1) Macroinvertebrates & Periphyton (Kathmandu University protocol) 2) Fish eDNA Limited: Backpack electrofishing Underwater video Cast Nets Dip nets 		

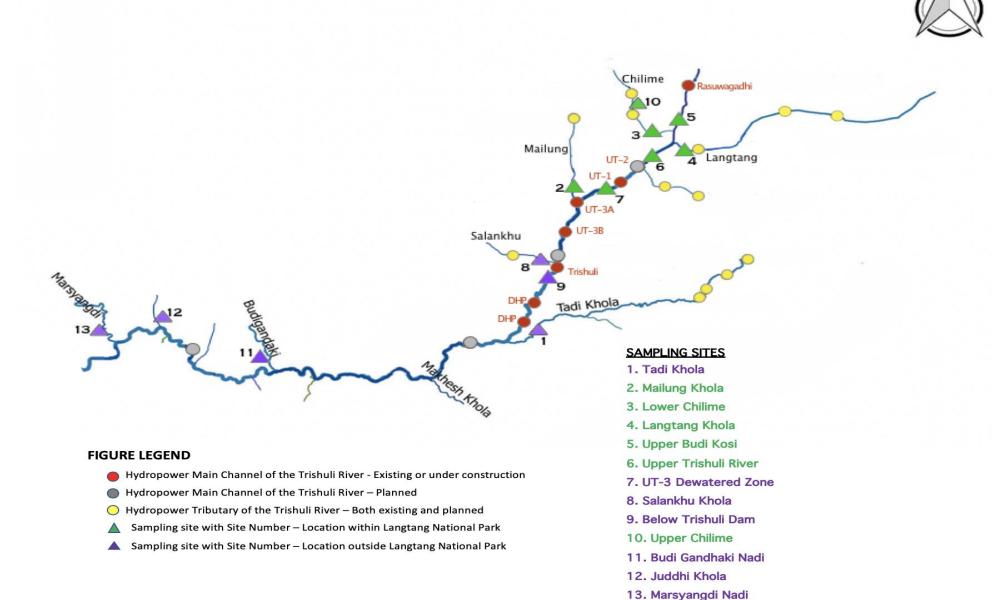
Trishuli Assessment Tool field methods

TARGET	TRIBUTARIES	MAINSTEM
Mahseer (Adult)	 eDNA Backpack electrofishing Cast nets 	AnglingeDNA
Mahseer (Juvenile)	 eDNA Backpack electrofishing Cast nets Underwater video Dip nets 	 eDNA Limited: Backpack electrofishing Cast nets Underwater video Dip nets
Snow Trout (Adult)	 eDNA Backpack electrofishing Cast nets Underwater video 	 eDNA Limited: Backpack electrofishing Cast nets
Snow Trout (Juvenile)	 eDNA Backpack electrofishing Cast netting Underwater video Dip nets 	 eDNA Limited: Backpack electrofishing Cast nets Underwater video Dip nets

Sampling Effort for each Field Method - Standardized

33

Method	Effort Units	Number of units	Approx. Sampling/ Total Time *RECORD THE TIME SPENT SAMPLING	Personnel	
Electrofishing	Time sampling with current on (minutes)	20 min US/20 min DS (40 minutes total/site)	40 min/120 min	3 people	
Cast Net	Cast Net Throws Time for 25 throws (mins)	12 US/1 MP/12 DS (25 total/site)	60 min/120 min	2 people	
Dip Net	Dip Net Emersions	10 samples/site	30 min/60 min	1 person	
Underwater Video	Camera sets	5 minute recording/set 6 sets US / 6 sets DS (12 sets/site)	60 min/90 min	1 person	
eDNA	2 L water samples	5 samples+1 control/site (6 samples/site)	60 min/180 min	2-4 people	
Macroinvertebrate sampling	Net subsamples	20 total over different substrate types	60 min/150 min	2-3 people	
Periphyton sampling	Rock Scraped	5 per site	15 min/30 min	2-3 people	


Creating Markets, Creating Opportunities

Trishuli Field Team February 2020

Sampling Sites for Trishuli Assessment Tool Test survey, February 2020

Field Testing of the Trishuli Assessment Tool – February 2020

36

Fish identification and measurements

eDNA

Electrofishing

Electrofishing Training

Macroinvertebrate Training

Creating Markets, Creating Opportunities

Comparison of Fish data during February 2020 field survey

Site #	Site Code	Site Location	Cast Netting				ElectroFisher			
Site			Total #		Sample Time		Total #		Sample Time	
#	Code	Site	Fish	CPUE	(min)	# Spp	Fish	CPUE	(min)	# Spp
1	TAD	Tadi Khola	20	21.1	57	4	106	199	32	15
2	MAI	Mailung Khola	26	34.7	445	1	44	75.4	35	4
3	LCH	Lower Chilime	22	24	55	1	80	320	15	2
8	SAK	Salankhu Khola	5	11.5	26	3	99	175	34	7

Field Methods of the Trishuli Assessment Tool

Backpack Electrofishing

Webinar February 4 Bill Beaumont

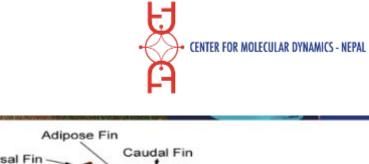
Electrofishing Benefits

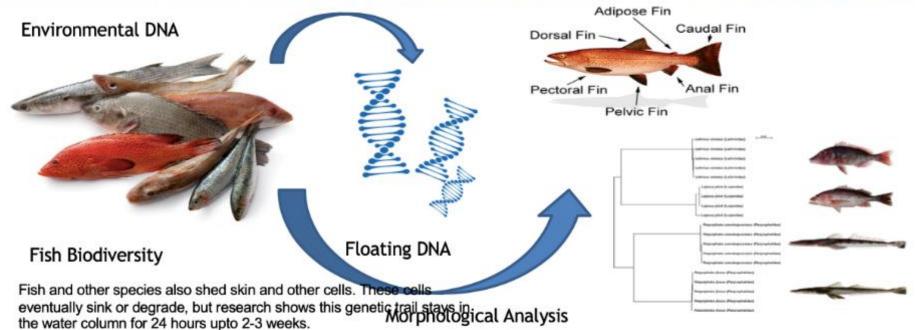
- Extremely effective in sampling large numbers and high levels of species/size diversity
- Requires little time for actual in-water sampling
- Can sample in shallow water (slow or fast) effectively
- Can sample in very complex, rocky habitats very effectively

Electrofishing challenges

Requires:

- Specialized and expensive backpack equipment (\$3-10K)
- Training and practice to use effectively
- Heavy equipment
- 3 person team
- Safety precautions
- Special permits


Shallow and clear water (tributaries and backwater, side channels)



Environmental DNA (eDNA)

Webinar February 9 Kat Bruce (NatureMetrics) Dibesh Karmacharya (CMDN)

Nepal Fish Biodiversity Project (http://fish.org.np)

Environmental DNA (eDNA) Benefits

- Is highly effective in detecting presence of high numbers of species
- Can detect the presence of species that are very difficult to collect with other methods
- Can be employed in essentially any water conditions
- DNA samples can be kept long term in correct storage conditions for future reference studies
- DNA samples can be used to target species other than fish

Environmental DNA (eDNA) Challenges

Requires:

- The method is still in a developing phase; some anomalies still need scientific validation
- Specific and bulky field equipment/supplies
- Specialized Training
- Expensive laboratory analysis
- Team of 3-4 people at a minimum

Limitations:

- Abundance data questionable (but improving)
- False positives are possible
- Requires substantial time to get final results

Cast Nets

Pros:

- Moderately effective for catching fish of all sizes
- Can be used in many different habitats including deep and fast moving water
- Requires only two people (caster and bucket carrier)
- Cast nets are relatively inexpensive and available in Nepal
- Is the technique most used in the past, so most compatible with previous data

Challenges:

- Requires skill and experience to cast the net well (but local fishermen are good)
- Limited efficacy for sampling small benthic species (e.g., loach spp)
- Inconsistent mesh size between studies

⁴⁶ Underwater Video (with Go-Pro Camera)

Underwater Video

Pros:

- Can observe many fish and often species not captured with other gear
- Requires only one operator (subject to Health and Safety regulations)
- Training is minimal
- Provides permanent record

Challenges:

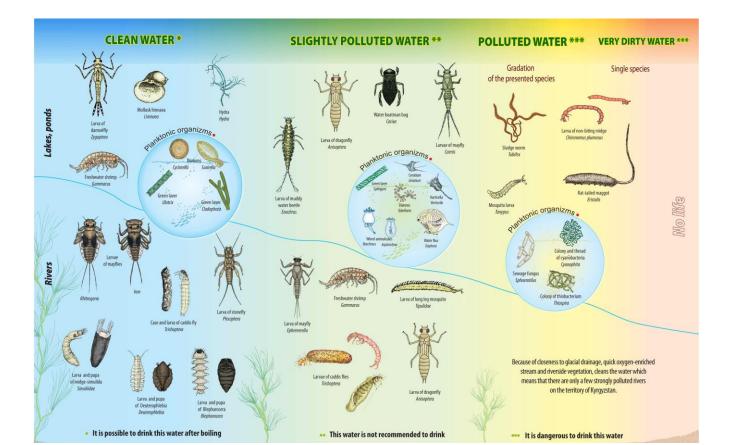
- Equipment is somewhat expensive
- Data analysis requires lab-based viewing to count and ID fish
- Requires very clear water
- Deployment and retrieval of equipment may require swimming

Dip Nets

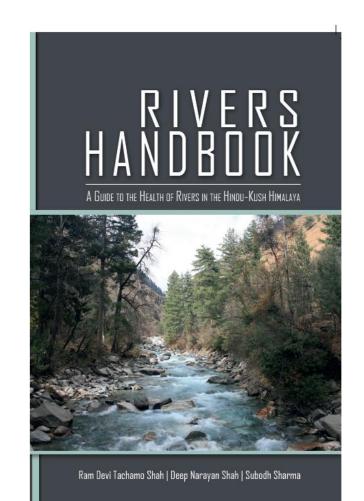
Pros:

- Equipment is inexpensive and easy to use
- Requires little time for actual in-water sampling
- Only reliable method for capturing larval fish
- Requires only a single operator

• Provides evidence of species recruitment and identifies spawning/nursery areas


Challenges:

- · Requires spotting larval fish visually in shallow water
- Is extremely size selective
- Requires shallow and clear water



Macroinvertebrates and Periphyton

- Macroinvertebrates are aquatic invertebrates larger than 500 um
- Periphyton are small aquatic animals and plants (eg. algae) that cling to rocks
- Both are important in the aquatic ecosystem
 - Food for many other organisms, especially fish
 - Break down organic matter
 - Filter and clean the water
- Respond quickly to environmental changes, so are good indicators

Webinar February 11 Ram Devi Tachamo Shah Deep Narayan Shah

Macroinvertebrates and Periphyton

Pros:

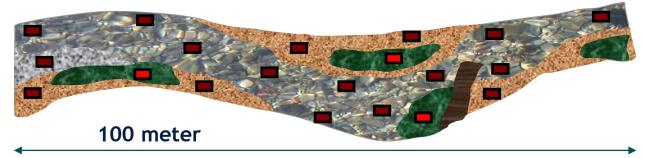
- Occur in high abundances -relatively easy to sample
- Relatively larger body size -easier to identify
- Taxonomically and ecologically highly diverse
- Live from few months to years integrate short- and long term pollution exposures
- Limited mobility -preventing them from escaping from occasional pollutions
- Many taxa are highly sensitive to changes in water quality, water level fluctuations and habitat changes

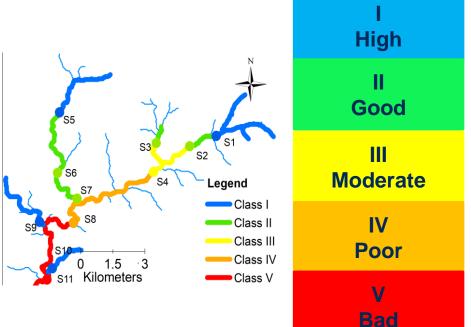
Macroinvertebrates occupy the largest portion of aquatic food web and form a vital link between aquatic plants, algae, and leaf litter to the fish species and even birds.

Challenges:

 Requires high degree of standardisation of the methods and assessment and evaluation of effects

February 18 Webinar Leeanne Alonso (IFC) Jonathan Levin (RSA)


Sampling Design and Data Analysis



Multi-habitat Sampling (MHS)

✓ representative sampling of all major habitats (mineral and organic)

Requirements: Field protocol, habitat estimation sheets, kick-nets, gloves, waders, buckets, white trays, sample containers, jars, vials, sieve (500 µm), ethyl alcohol (99 %), pencil & labels, paper, life jacket, rope, second person(!), cellular phone...

Autecology on species level

Ecological indicators

Basis for assessment

International Finance Corporation WORLD BANKGROUP

Creating Opportunities

Data Analysis: Macroinvertebrates

Metric type	Candidate metrics	Calculation		
ess res	EPT richness	Number of present Ephemeroptera, Plecoptera and Trichoptera taxa		
Richness measures	Shannon-Wiener diversity index (H')	- $\Sigma p_i ln p_i$ (Shannon and Weaver, 1949) Where, S=taxa richness, p_i =relative abundance of i th taxa		
	% EPT richness	Percentage of Ephemeroptera, Plecoptera and Trichoptera taxa		
res	% Sensitiveindividuals	Percentage of present taxa individuals with tolerance score ≥ 7		
neasul	% Facultative individuals	Percentage of present taxa individuals with tolerance score 4 to 6		
sition r	% Tolerant individuals	Percentage of present taxa individuals with tolerance score 1 to 3		
Composition measures	Biotic Index	Biotic Index = $\sum_{i=1}^{n} TSSi/n$ Where TTS is the Taya Sensitive Secret of		
		Where, TTS_i is the Taxa Sensitive Score of taxon <i>i</i> and <i>n</i> is the total number of scored taxa		
ds				
Functional Feeding Guilds	% Shredder individuals	Percentage of Shredder individuals		
nction of the second seco	% Scraper individuals	Percentage of Scraper individuals		
Fun eedi	-	Percentage of Collecter-gatherer individuals		
H	% Collector-filterer individuals	Percentage of Collector-filterer individuals		

Data Targets

1. Overall Aquatic Biodiversity

Composition – List of Species with taxonomically correct names

species

individuals of selected species

2. Snow Trout adults and juveniles (Schizothorax richardsonii)

individuals

Distribution/locations

Size/weight/gender/reproductive status

3. Golden Mahaseer adults and juveniles (Tor putitora)

individuals

Distribution/locations

Size/weight/gender/reproductive status

4. Macroinvertebrates/Periphyton

Key Taxa

Functional Groups/ Key Indices

Study Design and Data Analysis

Plan the Sampling Design and Data Analysis from the start to contribute to all objectives:

- Establish an Aquatic Biodiversity Baseline for ESIA
- Collect data for Environmental Flows (EFlows) Assessment
- Long-term Monitoring

Monitoring requires repeated sampling with same method, replicates, and specific data metrics

ESIA Baseline

Questions and Data

- 1. What is there- which species? (Composition)
 - Species List
- 2. How many are there? (Abundance or Population Size)
 - # individuals per species
- 3. Where are they? (Location and Distribution
 - Map of species distribution, compare abundance between sites

Sampling Frequency

- At least 2 seasons: Dry season and Wet season
- Preferably more in relation to fish biology and HPP operation (e.g. onset of monsoon upstream migration, spawning, low flows)

Sampling Sites

• As many as possible to capture variation in the ecosystem

Sampling Regions

An ESIA aquatic survey should include sampling in these Sampling Regions:

- 1. Upstream of Hydropower Project, including reservoir area
- 2. Diversion reach
- 3. Downstream of Power House (especially if a peaking Project)

Within each region, sampling sites should include:

- Main Stem
- Large Tributaries
- Small Tributaries
- River Tributaries

FIGURE LEGEND

Hydropower Main Channel of the Trishuli River - Existing or under construction

- Hydropower Main Channel of the Trishuli River Planned
- O Hydropower Tributary of the Trishuli River Both existing and planned

Blue Areas = Smaller Tributaries Green Areas = Larger Tributaries Orange Area = Main River Channel

Fish Data to collect in field

Fish Identification Webinar February 17 Rajeev Rahavan, KOFUS, India Asha Rayamajhi, NFRC

TRISHULI RIVER FISH SAMPLING DATA										ASIIA	nayamajin, Ni
Site Number	1										
River Name	Tadi Khola										
Location	Panchakanya										
Code	TAD	Water Temperature	17								
Date	23-Feb-20	Conductivity	62								
US Time/Distance	14min/80m	Voltage	400								
DS Time/Distance	18min/100m	Frequency (Hertz)	50							Total fish sam	pled = 106
Method	EF	Duty Cycle	10%							Total species sampled = 15	
Sample #	DnSt/UpSt	Species	SL	FL	TL	Wt	Photo	DNA - Fin	Voucher	Fish ID	NOTES
1	DS	Barilius Barilla	53	57	61	1.5	N	N	N		
2	DS	Barilius Barilla	55	60	66	2.5	N	N	N		
3	DS	Barilius bendelisis	65	73	80	4.0	N	N	N		
4	DS	Neolissochilus hexagonolepis	69	76	87	7.5	N	N	N		
5	DS	Lateral striped minnow	66	74	85	5.5	N	N	N		
6	DS	Barilius Barilla	65	73	80	5.5	N	N	N		
7	DS	Barilius Barilla	60	67	75	4.0	N	N	N		
8	DS	Barilius Barilla	51	57	64	3.5	N	N	N		
9	DS	Barilius Barilla	50	54	62	2.0	N	N	N		
10	DS	Lateral striped minnow	54	65	69	4.0	N	N	N		Males with Milt
11	DS	Barilius bendelisis	88	98	108	7.5	N	N	N		
12	DS	Barilius bendelisis	75	82	90	8.0	N	Ν	N		
13	DS	Barilius Barilla	58	64	72	4.0	N	N	N		
14	US	Garra spp	136	155	169	66.0	Y	Y	N	TAD-EF-14	Female with ripe eggs
15	US	Schizothorax spp	122	135	151	31.0	Y	Y	N	TAD-EF-15	Tuberacles present
16	US	Schizothorax spp	108	120	135	21.0	N	N	N		
17	US	Barilius bendelisis	88	97	105	11.5	N	N	N		
18	US	Barilius bendelisis	70	79	86	6.5	N	Ν	N		
19	US	Barilius Barilla	65	73	80	5.5	N	N	N		

60

Long-term Monitoring

Questions and Data

- 1. How has the the number of species changed over time?
- 2. How has the number of individuals of target species changed over time?
- 3. How has the distribution of species changed over time?
- 4. How has the composition of species changed over time?

Monitoring analysis requires specific metrics to quantitatively compare over time

- 1. CPUE = Catch (# individuals) Per Unit Effort (hours)
- 2. SPUE = Species (# species) Per Unit Effort (hours)

Monitoring analysis requires replicates to capture natural variation

• Trishuli Assessment Tool recommends at least 6 replicates (spatial sites or temporal surveys) per sampling region

Quantitative Metrics for Long-term Monitoring

Target	Indicator	Metric
Overall Aquatic Biodiversity	Composition	Species names
	Species Richness (# species)	# species / hour (SPUE)
	Abundance of target species	# individuals / hour (CPUE)
Snow Trout adults and juveniles (Schizothorax richardsonii)	Abundance	# individuals / hour (CPUE)
Golden Mahaseer adults and juveniles (<i>Tor putitora</i>)	Abundance	# individuals / hour (CPUE)
Macroinvertebrates/Periphyton	Richness and abundance of key taxa	EPT Index
	Functional Feeding Groups	Ratio of groups

Sample Data from the Tadi Khola, February 2020

Metric	Electrofishing	Cast Nets	Dip Nets
Total # fish individuals (N)	106	20	30
Total Effort (hours)	0.53	0.95	0.33
CPUE (# individuals/hour)	199	21.1	90
Species Richness - Total # fish species (S)	15	4	1
SPUE (# species/hour)	28	4.2	3

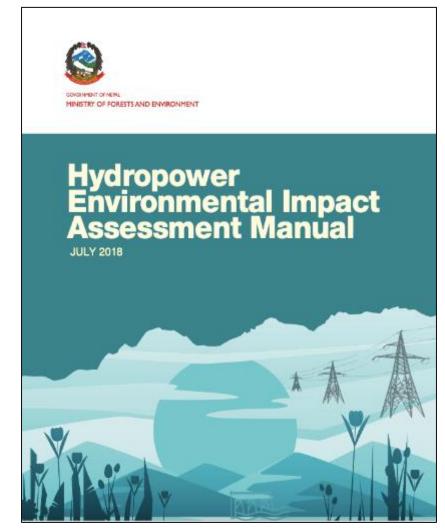
- For long term monitoring, CPUE and SPUE can be compared statistically between sampling surveys using T-test, ANOVA or non-parametric statistics
- February 18 Webinar will showcase an Excel-based statistical tool designed for the Trishuli Assessment Tool

Next Steps for the Trishuli Assessment Tool

Next Steps

Trishuli Assessment Tool Kit

- Manual
- Recordings of February Webinars
- Powerpoints from February Webinars
- In-person Training Courses


Develop local capacity for the Trishuli Assessment Tool

Promote use of the Trishuli Assessment Tool for ESIAs

- NEA
- Private Hydropower Developers

Link with the Freshwater Ecosystem Assessment Handbook

- Companion handbook to the Hydropower Environmental Impact Assessment Manual (MoFE)
- Forthcoming from ICIMOD and Forest Research Training Centre (FRTC)
- Prepared by Deep Shah and Ram Devi Tachamo Shah
- Webinar on May 11

http://mofe.gov.np/downloadfile/Hydropower%20Env ironmental%20Impact%20Assessment%20Manual_153 7854204.pdf

Continue to join the February IFC Workshop Webinar Series

Learn more about the field methods and other components of the Trishuli Assessment Tool:

- February 4: Electrofishing
- February 9: Environmental DNA (eDNA)
- February 11: Macroinvertebrate Sampling
- February 17: Himalayan Fish Identification
- February 18: Data Analysis for Long-term Monitoring

Sign up for webinars individually. Participants who attend all 6 webinars will receive a Certificate from IFC and be considered for in-person training on these topics.

Q & A Session

Moderator: Ms. Kate Lazarus Senior Asia ESG Lead IFC

