Macroinvertebrates

Presenters:

Ram Devi Tachamo Shah
Researcher, AEC, KU
ramdevi.env@gmail.com
Deep Narayan Shah
Assistant Professor, CDES, TU
dnshah@cdes.edu.np

Outline of the Presentation

- River Ecosystem and River Health
- Macroinvertebrates
- Biological Indicators
- Habitat Assessment
- Macroinvertebrates sampling-Multi-habitat sampling
- Identification of Macroinvertebrates
- Quality Control and Safety
- Data Presentation

River Ecosystem

The ecosystem of a river is the river viewed as a system operating in its natural environment, and includes biotic (living) interactions amongst plants, animals and microorganisms, as well as abiotic (nonliving) physical and chemical interactions.

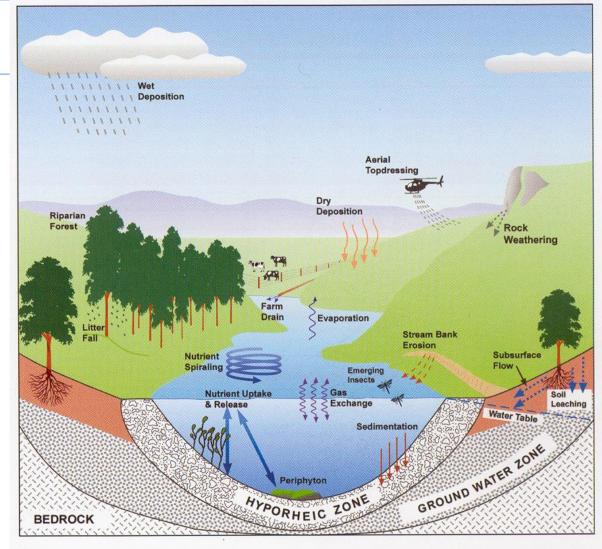


Figure 1 A stream in cross-section, showing some of the pathways that connect streams with their catchments and the atmosphere. Most pathways carry water and material to streams, but there are some that move from streams to the land (emerging insects) and from streams to the atmosphere (evaporation and gas exchange).

Greg Kelly, NIWA.

What is river health?

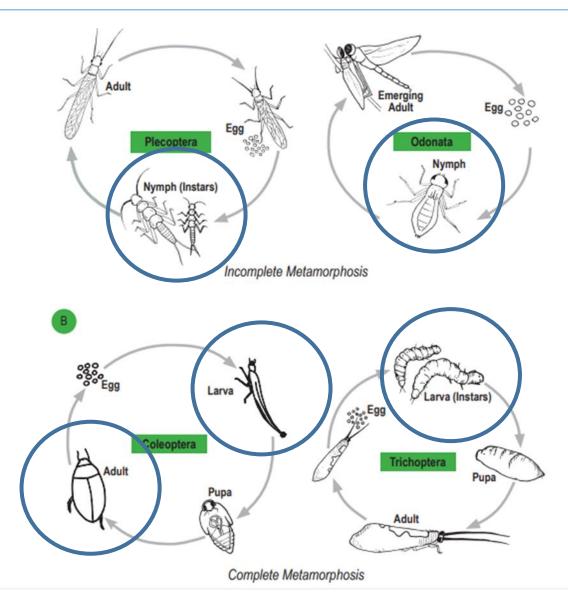
- Webster's dictionaries define health as a flourishing condition, well-being, vitality, or prosperity.
- An organism is healthy when it performs all its vital functions <u>normally</u> and <u>properly</u>, when it is able to recover from normal stresses.
- An environment is healthy when the supply of goods and services required by both *human* and *nonhuman* residents is sustained. <u>Healthy</u> is a short-hand for good condition.
- Health as a word and concept in ecology is useful precisely because it is a concept all people are familiar with.

Macroinvertebrates

- Diverse groups of small invertebrates that are retained on a 0.5 mm mesh net and can be seen with unaided eye.
- Comprised chiefly of insects, annelids, arachnids, crustaceans, clams and gastropods.
- Inhabit diverse habitats from flowing to still water.
- Adopt wide ranges of foods depending upon their habitat preferences.

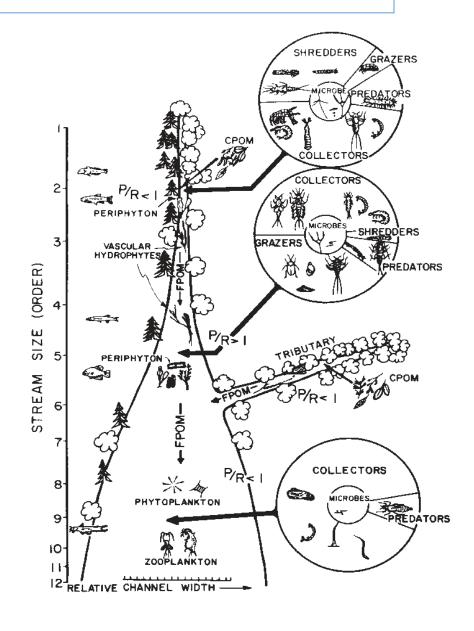
Macroinvertebrates - Examples

Macroinvertebrates -Examples



Life cycle of Macroinvertebrates

 Aquatic insects spend most of their life in water.


 Which stage of insect's life is considered for the assessment of river ecosystems?

Macroinvertebrates along a river course

 Assembly of instream biotic community in a river's downstream reaches is linked to those in the upstream.

• Headwater streams harbor organisms known as "shredders" that break coarse organic particulate matters, the mid-rivers contain algae and diatoms consumers called "Grazers" while the lower reaches have "Collectors" that consume fine organic particulate matters.

Macroinvertebrates- Functional Feeding Groups

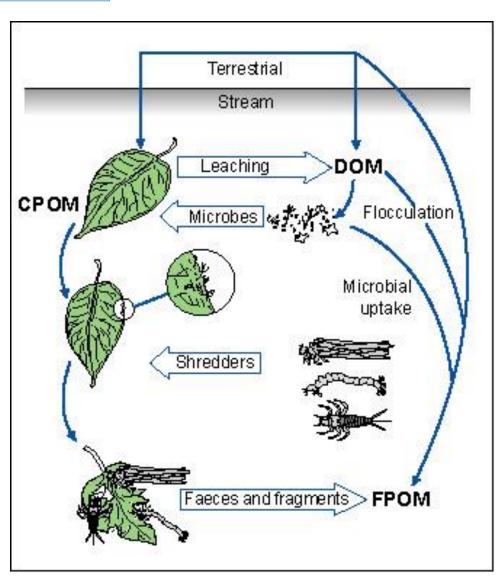
Shredders

Scrapers

Collector-gatherers Collector-filterers

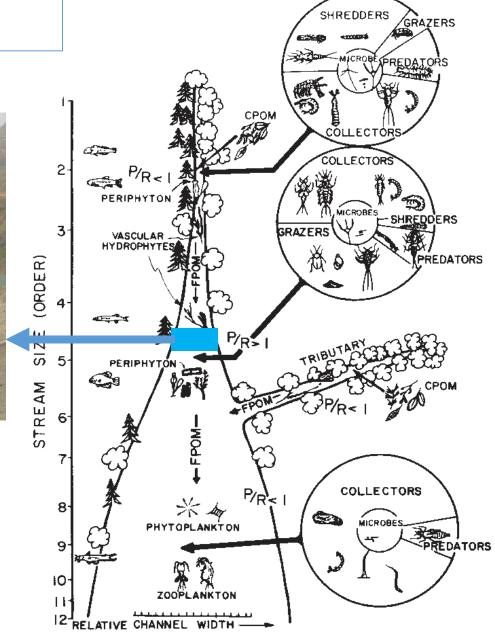
Macroinvertebrates- Functional Feeding Groups

Shredders


Collector-gatherers

Scrapers

Collector-filterers



Stream Ecology-Limnology

Macroinvertebrates along a river course

• Disruption in sediment transports, flow regimes, habitats that influence composition and structure of biotic community.

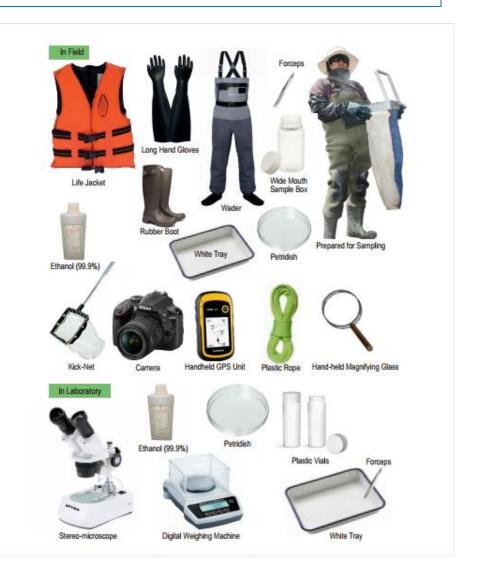
Bio-assessment

• Biological monitoring and biological endpoints provide the most integrative view of river condition, or river health.

• In many parts of the world, bio-assessment is in its infancy, but is increasing rapidly as a scientific foundation to support decisions regarding the protection of aquatic resources.

What is a biological indicator?

- Biological or animal species which, because of their ecological characteristics, react to a stressor/habitat degradation by a clear and specific modification of their vital functions.
- Why benthic macroinvertebrates?
 - Cosmopolitan in nature and highly diverse.
 - Abundantly found in river systems.
 - Due to relatively larger body size, easy to identify up to family level.
 - Less mobile


A prerequisite for the use of bio-indicators and particularly for the comparability of results is a high degree of **standardisation** of the methods and assessment and evaluation of effects.

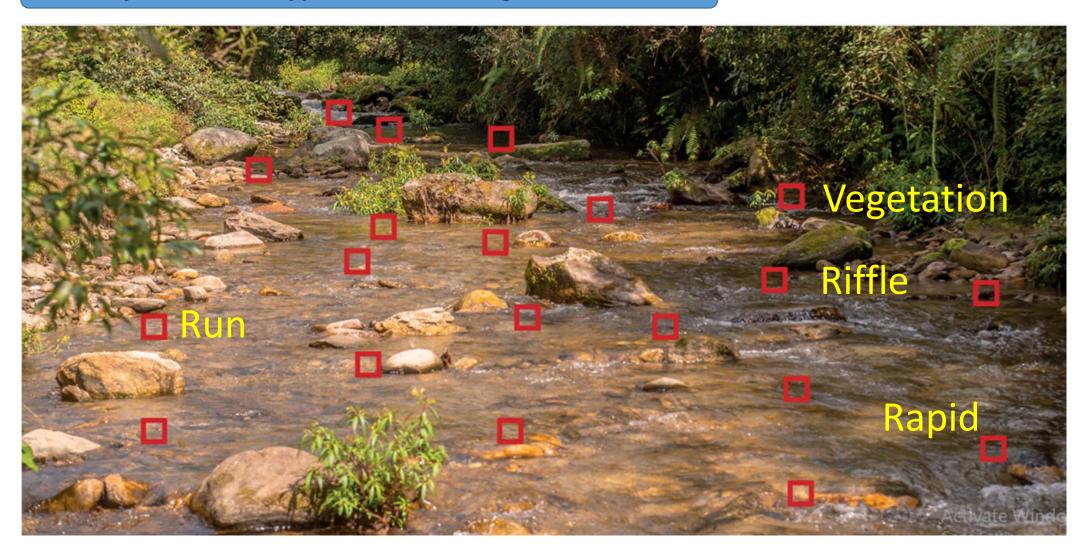
Macroinvertebrate Sampling

Non consumables	Consumables				
Rivers Handbook	99.9% Ethanol (For preservation)				
GPS Device	Site information sheet, data sheets				
Camera	Field note book, Pre-printed labels				
Magnifying glasses	Topographic map				
Kick-Net (Square shaped metallic frame) [Mesh size: 0.5 mm (500 μm); Frame- 25 cm width by 25 cm length] attached to 1 m long wooded handle	Pencil, Eraser, Sharpener, Cardboard permanent marker, Cello Tape, Ziplock bags-small and large				
Hand Net (Circular shaped metallic frame) [Mesh size:0.5 mm (500 µm);Frame-15 cm circumference] attached to 30 cm long handle	Vials				
Measuring tape (50m, I number)	I Sample box for I site				
I set of chest waders	I Bucket				
I pair of half boots	I Tray				
I pair of rubber gloves	Petri dishes (Minimum of 2 pieces)				
Stereo-microscope	I sharp pointed forceps				
Digital weighing machine					

Site Information Sheet

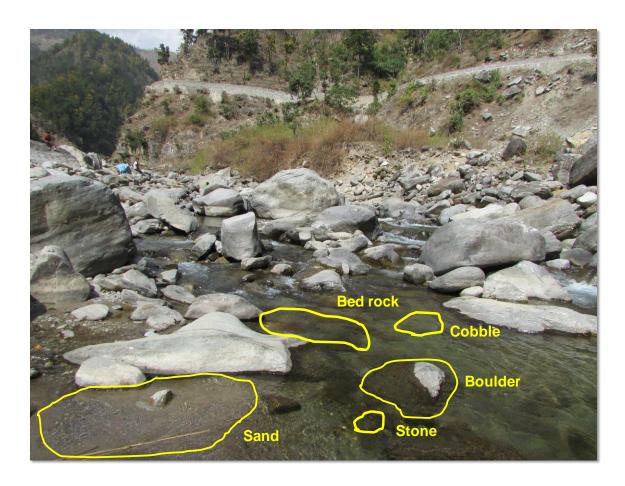
Sheet 1: Site information

1.	Site Description			
1.1 1.2 1.3 1.4	River/Stream River System Place, District, Province: Site/Station Code: Coordinates, Elevation N: E: Altitude:		1.7	Date:Sirveyor:
2.	Weather Conditions			
2.1	During Sampling 2.1.1 Precipitation Storm (Heavy Rain) Showers (Intermittent) 2.1.2 Wind: 2.1.3 Cloud cover Overcast Scattered Clouds	Steady Rain None Partly Cloudy Clear Clear		2.1.4 Other (Specify) Has it rained heavily in the last 24 hours? Yes No Has it rained heavily in >24 hours ago? Yes No
3.	Stream Characterization			
	Stream Subsystem Perennial Intermittent Stream Type Coldwater Warmwater	_		Stream Origin Glacial Swamp and bog Snow-fed Mixture of Origins Spring-fed Other(Specify)
4.	Catchment Characteristics			
4.1	Predominant surrounding land-use: Ind I km river stretch (taken upstream of Forest Field/Pasture Agricultural Residential Commercial Industrial Other (Specify)	x	4.3	Riparian Vegetation (within 18 m buffer in sampling) 4.2.1 Dominant Vegetation Type Trees Shrubs Shrubs Grasse Herbaceous 4.2.2 Dominant species present: Canopy Cover at Zenith Open Partly open Partly shaded Shaded Local Watershed Erosion None Moderate Heavy


5. Stressor																				
					Stressors Intesity															
Stressors Group Stressors			esocs				1 2					3 4				5				
FI Chi	144 . 1						-	_		_	2			3	_	_	•	+	9	
5.1 Solid waste	Waste dum	ping					+			\vdash			_		+			+		_
5.2 Effluents	Cremation						+			\vdash			_		+			+		_
3.2 Emuents	Sewage	-40					+			\vdash					+			+		_
	Agricultural Industrial of		nt .				+			\vdash					+			+		_
	Landfill lead						+			\vdash					+			+		_
5.3 Activities and	Squatter set						+			\vdash					+			+		_
Facilities	Picnic spots			mr.			+			\vdash			_		+			+		_
5.4 Hydro-	Vehicle cros						+			\vdash			_		+			+		_
morphological	Littering by						+			\vdash			_		+			+		_
Degradation	Channel, en				olr		+			\vdash			_		+			+		_
and Ecological	Bank cutting				-		+			\vdash			_		+			+		_
Degradation	Reservoir, d		lana	ownd	mont		+			\vdash			_		+			+		_
Degradation	Irrigation	an and	-	Culla	i i i e i i		+			\vdash					+			+		_
	Fishing and	hastine	_				+			\vdash			_		+			+		_
	Stone quarr			le e			+			\vdash			_		+			+		_
	Sand quarry		rusn	mg			+			\vdash					+			+		_
5.5 Personal Hygiene	Bathing and		_				+			\vdash					+			+		_
and Sanitation	Open defec		2				+			\vdash					+			+		_
5.6 Others	Open delec	ation					+			\vdash			_		+			+		_
3.5 Culers							_			_					_			_	_	_
6. Hydro-morphological Parameters (Instream Features)																				
6.1 Stream Depth			-	6.2 W	/ette	Stre	am V	/Idth	(Ave.	of 4			6.3 P	ropor	tion	of flo	w typ	e (wit	th resp	pect
						hin 100 m stretch) to sampling river stretch)														
Min.:										Rapid% Riffle%										
и														un					7	
Max.:				II)										un ool				iue		1
Avg.:				Avg.:.									-	001	/					
6.4 Discharge Measure	ment																			_
Distance from Bank	-				Т	Т	Т	П					Π					П		Г
Depth	-	+			\vdash	\vdash	\vdash	\vdash				\vdash	\vdash			\vdash	\vdash	\vdash	\vdash	
Velocity		+-			\vdash	\vdash	\vdash	\vdash					\vdash					\vdash	\vdash	
		—	_	_	-	-	_	\vdash	_	_	_	_	_	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	ш	_
7. Water Quality Parar	neters (Instrea	am Feat	ures)																	
7.1 Temperature													Sketo	th of t					pled v	vith
7.2 pH													samp	le poi	nts					
7.3 Turbidity	NTU																			
7.4 DO, DO Saturationmg/L,%																				
7.5 Electrical ConductivityµS/cm																				
7.6 TDS(mg/L)																				
7.7 Total Alkalinity(mg/L)																				
7.8 Total Hardness(mg/L)																				
7.9 Chloride(mg/L)																				
7.10 Nitrate(mg/L)																				
7.11 Ortho-phosphate(mg/L) 7.12 Ammonia(mg/L)																				
7.12 Ammonta 7.13 Water Odor	(mg/L)																			
None	Muddy	Sau	wage	П																
Chemical	Fishy				fy)		_													
7.14 Water Colour	, ப				.,															
Clear	Opaque	Slig	htly	Turbi	d															
State of Turbid Other (Specific)					1															

Macroinvertebrate Sampling

- Site selection strategy
 - Spatial and temporal scale
 - The selected site must be an appropriate river stretch that sufficiently represents the river.
 - Number of samples
 - Frequency of samples over a year: during baseflow, pre-monsoon and post-monsoon of the year

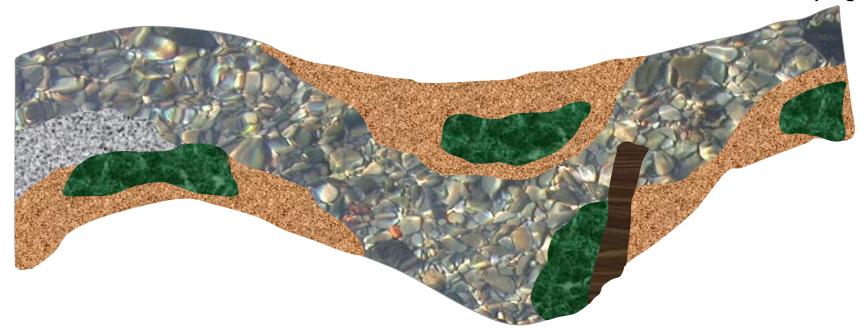

Macroinvertebrate Sampling

Identify substrate types and coverage

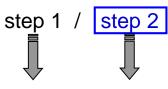
100m

Habitat Assessment

Habitat Assessment Sheet


Number of sampling units (in total 20 units at 5% interval) with respect to microhabitats coverage in defined sampling river reach.

Site code:	Date/time:	Investigator:						
	Mineral Substrate	Coverage (5% steps)	No. of Sampling Units					
Boulders, bedrock	(> 40 cm)							
Cobbles (> 20 cm -	- 40 cm)							
Stones (> 6 cm – 2	0 cm)							
Pebbles (> 2 cm - 6	5 cm)							
Gravel (>0.2 cm – 2	2 cm)							
Sand and mud (>6µ	ım – 2 mm)							
Silt loam, clay (inorg	ganic) (< 6 µm)							
Artificial substrates	i							
Sum		100	20					
	Biotic Substrate							
Algae								
Macrophytes- Emer	rgent							
Macrophytes- Subm	nerged							
Macrophytes- Float	ing							
Living parts of terre	estrial plants							
Wood – Tree trunk	s, branches, roots							
Coarse particulate	organic matter (CPOM) deposits							
Fine particulate org	ganic matter (FPOM) deposits							
Sewage fungi and ba	acteria							
Debris – Organic a	nd inorganic matter deposits							


step 1: recording of microhabitats
 (mineral & organic)

step 1: registration of microhabitats (mineral & organic)

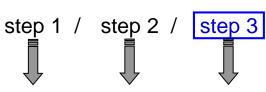
step 2: estimation of microhabitats
 (in intervals of 5 % steps)

mesolithal: 55 %

akal: 5 %

psammal: 25 %

Stone/algae15 %

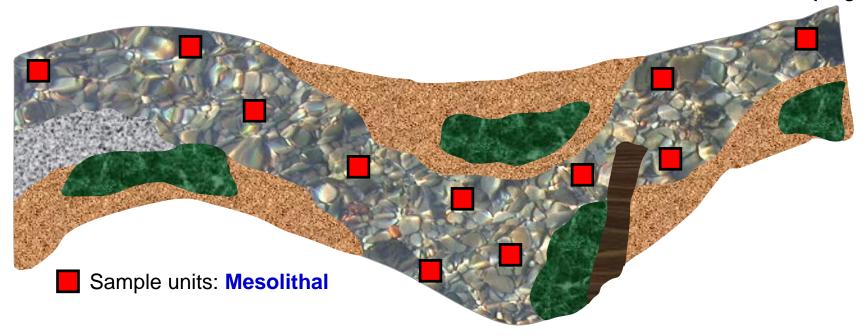

xylal: < 5 %

step 1: registration of microhabitats (mineral & organic)

step 2: estimation of microhabitats (in intervals of 5 % steps)

step 3: assignment of sampling units(1 sampling unit per 5 % step)

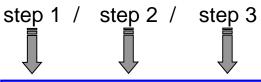
mesolithal: 55 % = 11 sampling units


akal: 5 % = 1 sampling units

psammal: 25 % = 5 sampling units

Stone/algae15 % = 3 sampling units

xylal: < 5 % =**no** sampling units

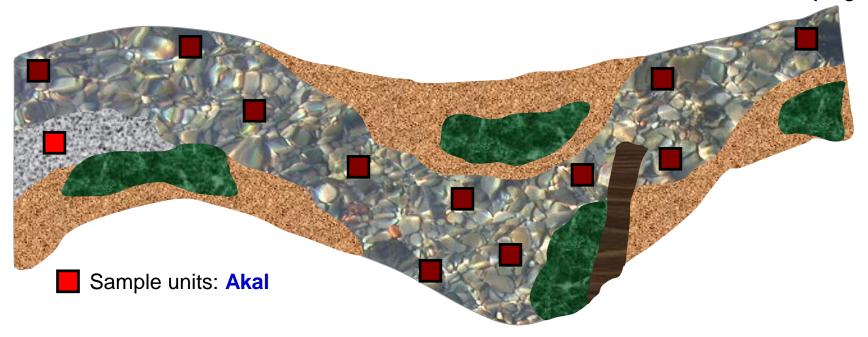


step 1: registration of microhabitats (mineral & organic)

step 2: estimation of microhabitats (in intervals of 5 % steps)

step 3: assignment of sampling units (1 sampling unit per 5 % step)

step 4: allocation of sampling units (see examples above)

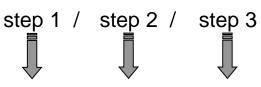

mesolithal: 55 % = 11 sampling units

akal: 5 % = 1 sampling units

psammal: 25 % = 5 sampling units

Stone/algae15 %= 3 sampling units

xylal: $< 5 \% = \underline{no}$ sampling units



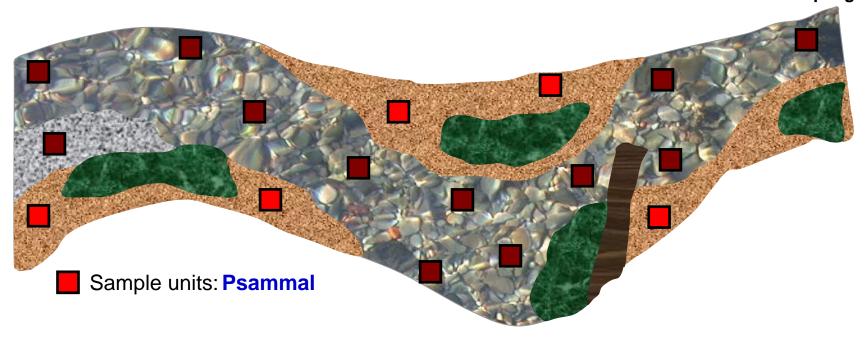
step 1: registration of microhabitats (mineral & organic)

step 2: estimation of microhabitats (in intervals of 5 % steps)

step 3: assignment of sampling units (1 sampling unit per 5 % step)

step 4: allocation of sampling units (see examples above)

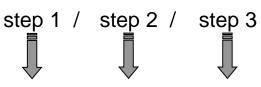
mesolithal: 55 % = 11 sampling units


akal: 5 % = 1 sampling units

psammal: 25 % = 5 sampling units

Stone/algael 5 % = 3 sampling units

xylal: < 5 % = <u>no</u> sampling units



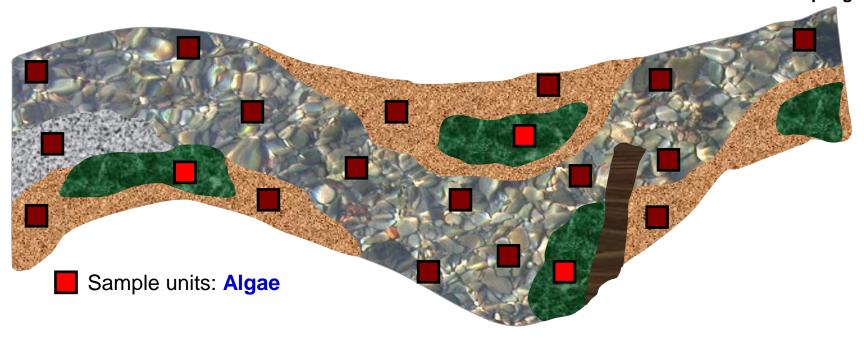
step 1: registration of microhabitats (mineral & organic)

step 2: estimation of microhabitats (in intervals of 5 % steps)

step 3: assignment of sampling units (1 sampling unit per 5 % step)

step 4: distribution of sampling units (see examples above)

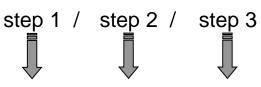
mesolithal: 55 % = 11 sampling units


akal: 5 % = 1 sampling units

psammal: 25 % = 5 sampling units

Stone/algael 5 % = 3 sampling units

xylal: < 5 % =**no** sampling units



step 1: registration of microhabitats (mineral & organic)

step 2: estimation of microhabitats (in intervals of 5 % steps)

step 3: assignment of sampling units (1 sampling unit per 5 % step)

step 4: allocation of sampling units (see examples above)

mesolithal: 55 % = 11 sampling units

akal: 5 % = 1 sampling units

psammal: 25 % = 5 sampling units

Stone/algae:15 % = 3 sampling units

xylal: $< 5 \% = \underline{no}$ sampling units

Multi-habitat Sampling (MHS)

- Multi-habitat sampling = representative sampling of all major habitats (mineral and organic)
- ✓ Sampling is directed <u>against</u> the current
- ✓ Each sampling unit covers an area of 25 cm x 25 cm
- whirl up the substrate by foot or hand
- maximum depth: 5 cm
- wash off cobbles or large wood by hand (soft bush)
- empty the hand net into a bucket or tray in time
 (e. g., after sampling 2–4 units) to avoid clogging of net

Sampling in non-wadeable rivers

Artificial substrate

River bank

Macroinvertebrate Sample Processing

Labelling and preservation

- All sample containers, vials, bottles, buckets, etc. must be properly labelled with at least:
 - Sampling code
 - Site name
 - Date
 - Total no. of containers (if more than one used)
- Only properly labelled samples are then fixed and preserved with standard preservative

Preservation

- Standard preservatives are:
 - Ethyl alcohol
 - Formalin (4 % Formaldehyde)

Samples preserved with Formalin must at least be stored for two weeks before being treated further.

After the storage in Formalin, samples should be transferred from fixative (e.g. formalin) to preservative (ethanol) if they are kept for more than a few weeks before sorting.

Laboratory processing of samples

Taxonomic Identification

3(9): 2045-2060 JOTT COMMUNICATION

Key to the larval stages of common Odonata of Hindu Kush Himalaya, with short notes on habitats and ecology

Hasko Nesemann 1, Ram Devi Tachamo Shah 2 & Deep Narayan Shah 3

¹ Centre for Environmental Science, Central University of Bihar, BIT Campus, Patna, Bihar 800014, India ² Hindu Kush Himalayan Benthological Society, Kausaltar, Nepal. P.O. Box: 20791, Sundhara, Kathmandu, Nepal

Senckenberg Research Institutes and Natural History Museums, Department of Limnology and Nature Conservation, mecystrasse 12, D-63571, Gelnhausen, Germany,

Date of publication (print): 26 September 2011 ISSN 0974-7907 (online) | 0974-7893 (print)

Manuscript details: Ms # o2759 Received 11 April 2011 Final received 22 July 2011 Finally accepted 11 August 2011

Citation: Nesemann, H., R.D.T. Shah & D.N. Shah (2011). Key to the larval stages of common Odonata of Hindu Kush Himalaya, with short notes on habitats and ecology. *Journal of Threatened Taxa* 3(9): 2045–2060.

Copyright: @ Hasko Nesemann. Ram Dev Copyright: © Hasko Nesemann, Ram Devi Tachamo Shah & Deep Narayen Shah 2011. Creative Commons Attribution 3.0 Unported License. JoTT allows unrestricted use of this article in any medium for non-profit purposes, reproduction and distribution by providing dequate credit to the authors and the source

Author Details: HASKO NESEMANN, RAM DEVI TACHANO SHAH & DEEP NARAYAN SHAH are aquatin nterest in freshwater ecology, biogeography, conservation, and ecological water quality

Date of publication (online): 26 September 2011 Abstract; The order Odonata is one of the most widely studied groups among insects from the oriental region. They colonize in both stagnant and running water bodies of wide water quality. Hitherto, the existing literature on the Odonata contained numerous publications with coloured figures of adults, helpful for identification. Identification key with figures on larval stages, using their coloration as distinguishing characters are argely missing. The current work attempts to provide an identification key to aquation larvae of the most common families of Zygoptera, Anisoptera and Anisozygoptera with colour illustrations. The specimens were collected from Nepal and India (northern part). Each family is represented by several examples to demonstrate the range of morphological variability. This key helps determination of aquatic larvae Odonata up to family level without enormous efforts in field and laboratory.

Keywords: Aquatic insect, damselfly, dragonfly, ecology, identification key, India

The modern order Odonata is highly diversified with 5,680-5,747 (accepted) extant species, 864 (accepted) extant subspecies and approximately 600 fossil species (Xylander & Günther 2003; Kalman et al. 2008; van Tol 2008). The highest species number is known from the ecologists. They are specialized in aquatic Oriental region which has more than 1,000 species. From India, exactly 499 species were recorded until 2005 by Mitra and 463 species confirmed by Subramanian (2009). Among all the species and subspecies within this geographical limit, the figure or description is known only for 78 taxa (Mitra 2005). For Nepal the number of species and subspecies was Acknowledgements: We wanto thank Suboch Sharma (Analise Ecology Centre, Kahmanda University), Draibek Karva, Republished Sharma (Analise Ecology Centre, Kahmanda University), Draibek Karva, Republished K

There has been an old tradition in publication of very high quality colour figures for each species since the 18th century (Malz & Schröder 1979). In recent years all known Odonata species from the Japanese Archipelago were published by Okudaira et al. (2005) giving colour figures of both the

Mitra (2003) has provided an updated list of the regional species

First records of Rhicnoda natatrix and Rhicnoda rugosa (Blattodea: Blaberidae) from Nepal and India (Maharashtra) with notes on habitat quality

Hasko Nesemann¹, Ram Devi T. Shah², Deep Narayan Shah² & Subodh Sharma³

¹³ Aquatic Ecology Center, Kathmandu University, Dhulikhel, Nepal ³ Hindu Kush Himalayan Benthological Society, Kausaltar, Nepal Email: ¹ hnesemann2000@yahoo.co.in

Editor: Prem Budha Manuscript details: Ms # o2281

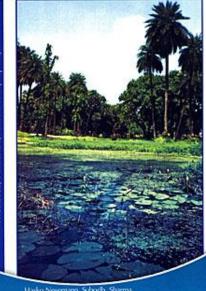
d 03 August 2009 Final received 09 November 2009 Finally accepted 03 December 2009

Citation: Nesemann, H., R.D.T. Shah, D.N. Shah & S. Sharma (2010). First records of Rhicnoda

Abstract: Two species of costroenhes were collected from aqualch habitats of undisturbed nutral forest streams in Replan and fault (habitantather). Philosophia natifier and Riberood regions. Nymphs and audits are depicted and field observation of microhabitat and bahavior described. Trace listed all countrying microirverdensite featurs are previous, and water quality cleas is a final property of the second of the secon

Fossil ancestors show the order Blattodea to be among the oldest extant groups of insects. "Blattoid" insects were already highly diversified in the Paleozoic and cockroaches (Eublattoidea) were dominant terrestrial insects in the Carboniferous contractions (Coulombiology, where dominant terrestrian insection in decident in the observation of the property of the proper production and distribution by providing adequate
redit to the authors and the source of publicathe Mesozoic, while extant aquatic cockroaches are known only from South Asia. outs to be authors and the source of pulsa-tion. Author Chestals. All the authors specialis in pulsation in a Chestal Chestals. All the authors specialis in pulsation in the literature is partial. Special pulsation in the literature is partial special pulsation in the literature is partial special pulsation. The literature is partial special pulsation in the literature is partial special pulsation in the literature is partial special pulsation in the literature is partial special pulsation. The literature is partial special pulsation in the literat 1921). Findings of aquatic Epilamprinae in a Malaysian stream were published by Author Contribution: INI conducted the field study and warfes to present association and the field study and warfes to the paper as well as flushful of 1979. In identified three general. In the more recent taxnominal literature of aquatic macro-inventednates Balthodea are briefly mentioned only by Ward (1992: the speers a well as conducted field and but study.

1987 | Hutchinson (1993: 569) and Dudegon (1999: 511-512).


1988 | From the Indian subcontinent the first published record (Annandale 1906: 105).

Associategements: There's a so a horizont formulation and the source of the present study aquatic cockroaches were found in Maharashtra and Nepal. In both states no lists of cockroaches exists. Thus our records appear to be new for the country and the Himalayan region. Mandal (2003, 2006) did not mention the presence of Rhichoda species for the fauna of Sikkim and Arunachal Pradesh. Most of the scattered published literature includes only terrestrial samples without specific habitat information. Aquatic forms might have been simply overlooked, because no particular

During different stream nurveys in Nepal and India undertaken by the first three authors. Bistindees were discovered in qualitative samples and considered not exceeded to exacidentally terrestrial forms. After recognizing them as true semi-aquatic and aquatic fauna in the field, through research was done to obtain more knowledge on these virtually unknown animals. Field collection of aquatic macroinvertebrates was done by the hand pickup method and with him hand (since him of seminal vocasions. The relative abundance of each taxon was estimated in field observations and [after

Journal of Threatened Taxa | www.threatenedtaxa.org | January 2010 | 2(1): 648-652

RIVERS HANDBOOK

A GUIDE TO THE HEALTH OF RIVERS IN THE HINDU-KUSH HIMALAYA

Ram Devi Tachamo Shah | Deep Narayan Shah | Subodh Sharma

Advantages of multi-habitat sampling

• It is a quantitative method, therefore, the number of species recorded for a site can be directly employed to statistical techniques.

• It is a representative copy for a site.

• It provides abundance of each group in addition to composition which can later be analysed in different ways and for purposes. E.g., FFGs.

Cons of multi-habitat sampling

- Does not cover an under represented habitat (< 5% habitat coverage in selected river stretch)
- Does not represent all available species for the site.

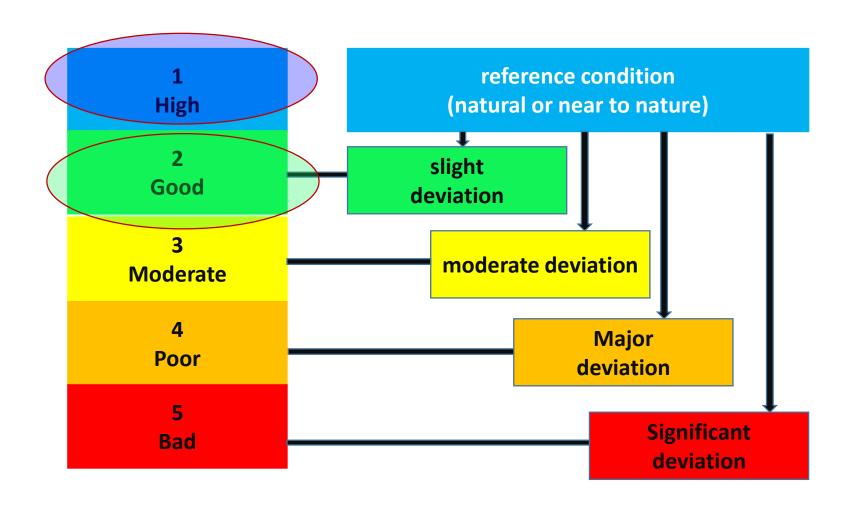
Qualitative sampling approach

- >to provide complete taxa lists!
- >to sample particular species or species groups!

Quality Control

- Sample labels must be properly placed into the sample container. The outside of the container should also be labeled with the same information.
- After sampling has been completed at a given site, nets and other gear that have come in contact with the sample should be rinsed thoroughly, examined carefully, and made free of organisms or debris. Any additional organisms found should be placed into the sample containers. The equipment should be examined again prior to use at the next sampling site.

Safety


- Before going to the river, put on wading trousers on body.
- Precautions should be taken while getting into the river as the river bed might be slippery due to algal growth.
- While preserving samples, hand gloves should be worn to protect skin as they

may dry skins.

A first-aid kit should be in the field.

River status classification

EPT Index

• EPT Index = Total number of E, P and T taxa in a site

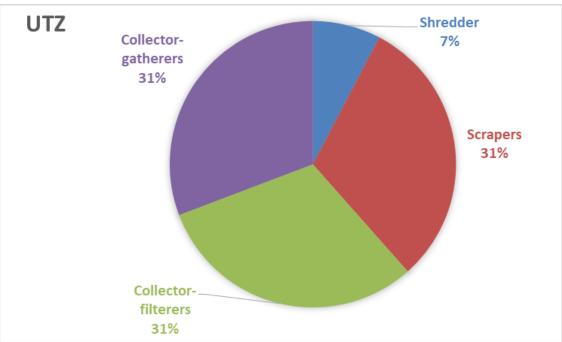
Table: EPT index and respective water quality class(NCDEHNR. 1997)

Water Quality ratings	Excellent	Good	Good-Fair	Fair	Poor
EPT	>27	21-27	14-20	7-13	0-6

Table 13: List of commonly applied candidate biotic metrics to assess the impact of perturbation in a site under investigation.

Metric type	Candidate metrics	Calculation	
	Total taxa richness EPT richness	Total number of present taxa Number of present Ephemeroptera, Plecoptera and Trichoptera taxa	
	Ephemeroptera richness	Number of present Ephemeroptera taxa	
	Trichoptera richness	Number of present Trichoptera taxa	
	COH richness	Number of present Coleoptera, Odonata and Hemiptera taxa	
Richness Measures	Diptera richness	Number of present Diptera taxa	
	Worm and Leech richness	Number of present Worm and Leech taxa	
	Shannon-Wiener diversity	- Σp,Inp, (Shannon and Weaver, 1949)	
	index (H')	where, p _i =Relative abundance of i th taxon	
2	Pielous evenness (E)	H' In (S)	
		where, H'= Shannon-Wiener diversity index, S= species richness	
	Simpson's index of diversity	I-D, Simpson index (D)= $\Sigma n(n-1)/N(N-1)$	


Composition Measures


% EPT richness	Percentage of Ephemeroptera, Plecoptera and Trichoptera taxa
% Ephemertoptera richness	Percentage of Ephemeroptera taxa
% Trichoptera richness	Percentage of Trichoptera taxa
% COH richness	Percentage of Coleoptera, Odonata and Hemiptera taxa
% Three dominant taxa	Percentage of three highly abundant taxa
% Diptera individuals	Percentage of Diptera individuals
% Chironimdae individuals	Percentage of Chironomidae individuals
% Non insecta individuals	Percentage of non insecta individuals
% Worm and Leech individuals	Percentage of Worm and Leech individuals
% of Mollusca individuals	Percentages of Mollusca individuals

Metric type	Candidate metrics	Calculation
	Sensitive taxa richness	Number of taxa with tolerance score ≥7
	Facultative taxa richness	Number of taxa with tolerance score 4 to 6
S	Tolerant taxa richnss	Number of taxa with tolerance score I to 3
Sensitive Measures	% Sensitive individuals	Percentage of present taxa individuals with tolerance score ≥7
sitive	% Facultative individuals	Percentage of present taxa individuals with tolerance score 4 to 6
Ser	% Tolerant individuals	Percentage of present taxa individuals with tolerance score I to 3
	Biotic Index	$Biotic\ Index = \underbrace{\sum_{i=1}^{n} TSS_{i}}_{n}$
		where, TSS, is the Taxa Sensitive Score of taxon i and n is the total number of scored taxa*

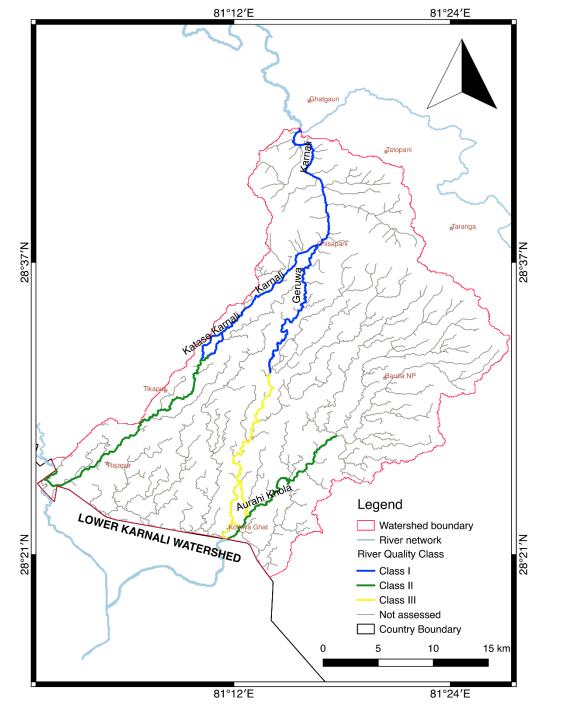
	Shredder richness	Number of Shredder taxa
	Scraper richness	Number of Scraper taxa
sdr	Collector-gatherer richness	Number of Collector-gatherer taxa
Grot	Collector-filterer richness	Number of Collector-filterers taxa
ding	Predator richness	Number of Predator taxa
Fee	% Shredder individuals	Percentage of Shredder individuals
ional	% Scraper individuals	Percentage of Scraper individuals
Functional Feeding Groups	% Collecter-gatherer individuals	Percentage of Collecter-gatherer individuals
	% Collector-filterer individuals	Percentage of Collector-filterer individuals
	% Predator individuals	Percentage of Predator individuals
ers	Density	Number of individuals per square meter
Others	Biomass	Dry biomass of all individuals in a site

Functional Feeding Groups-Example

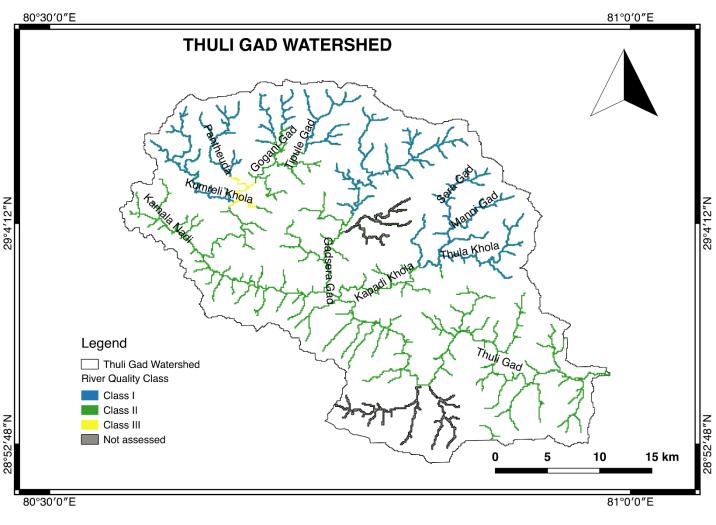
EPT Index- Example

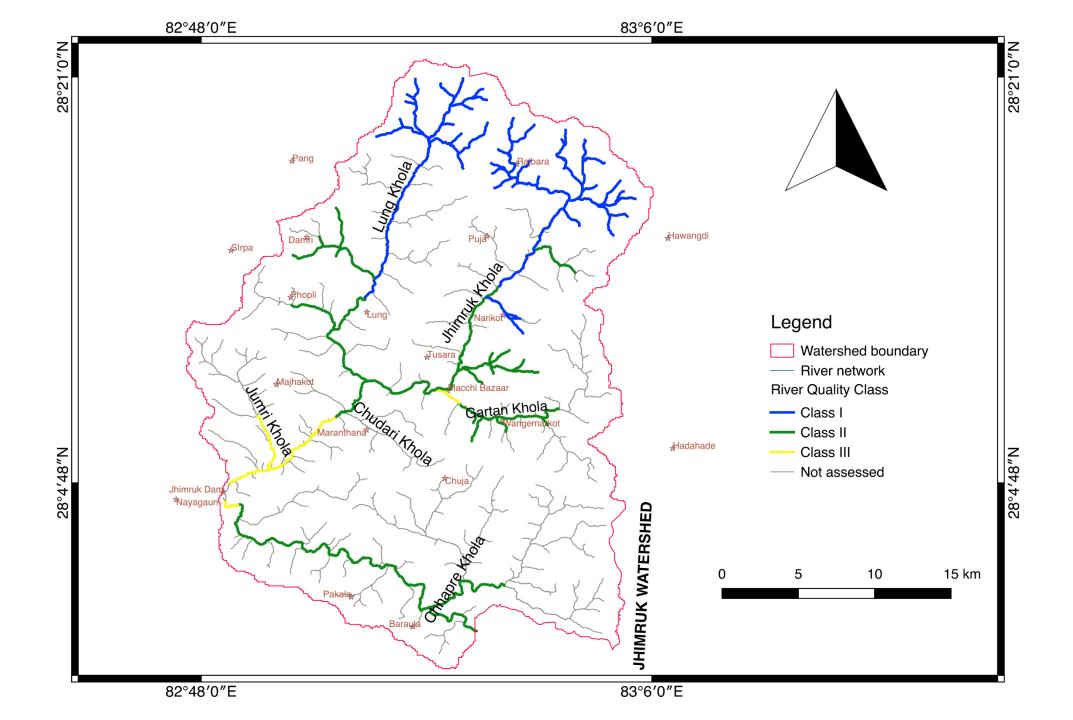
Sites	Code	EPT Rating
Upper Chilime	UCH	15 Good-Fair
Lower Chilime	LCH	13 Fair
Sankhu	SAK	18 Good-Fair
Langtang Khola	LAN	18 Good-Fair
MailungKhola	MAI	24 Good
Tadi Khola	TAD	21 Good
Upper Budi Koshi	UBK	18 Good-Fair
Below Trushuli Dam	BTD	8 Fair
Upper Trishuli River	UTR	14 Good-Fair
Trishuli Dewatered Zone (UDZ)	UTZ	12 Fair
Lower Trishuli River	LTR	11 Fair

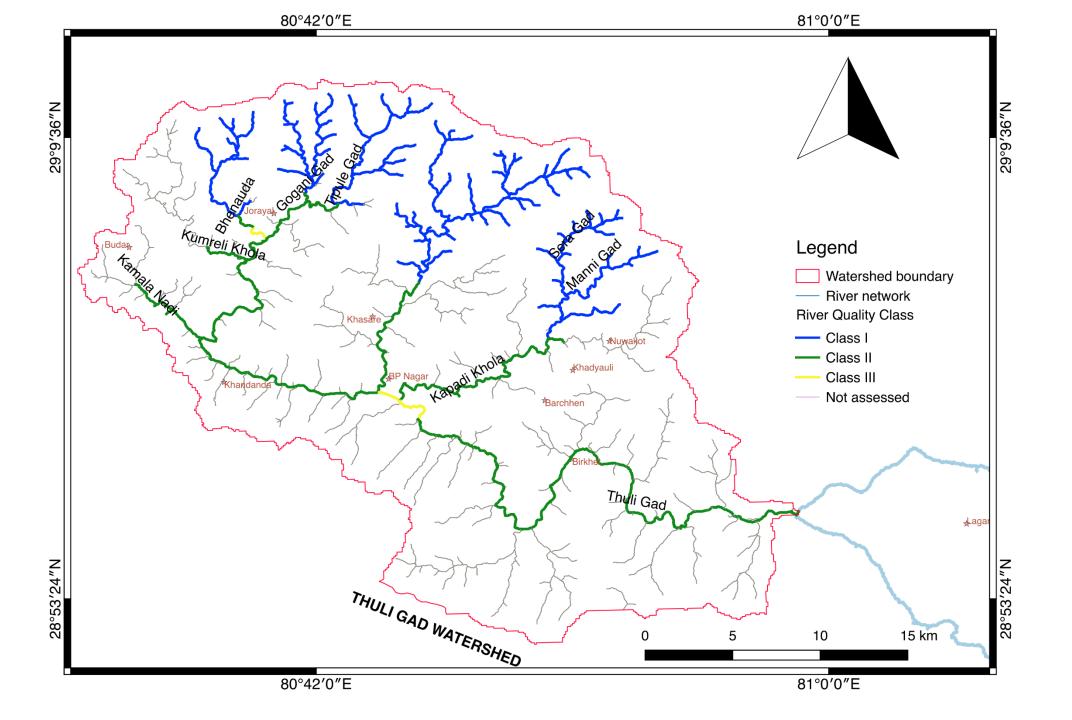
Determination of RQC


Box 2	Determination of biotic index value and river quality class of a study site.
-------	--

S.No.	Taxa	TSS
T	Baetidae	4
2	Baetidae- Baetiella spp.	7
3	Perlidae	8
4	Calamoceratidae	8
5	Rhyacophilidae- Hypo-rhyacophila spp.	8
6	Stenopsychidae	8
7	Psephenidae- Psephenoidinae	7
8	Scirtidae	10
9	Synlestidae	NA
10	Dixidae	7
П	Hydracarina	7
12	Pomatiopsidae	10
	Sum	84


Biotic Index =
$$\frac{\sum_{i=1}^{n} TSS_{i}}{n}$$
= 84/11
= 7.64

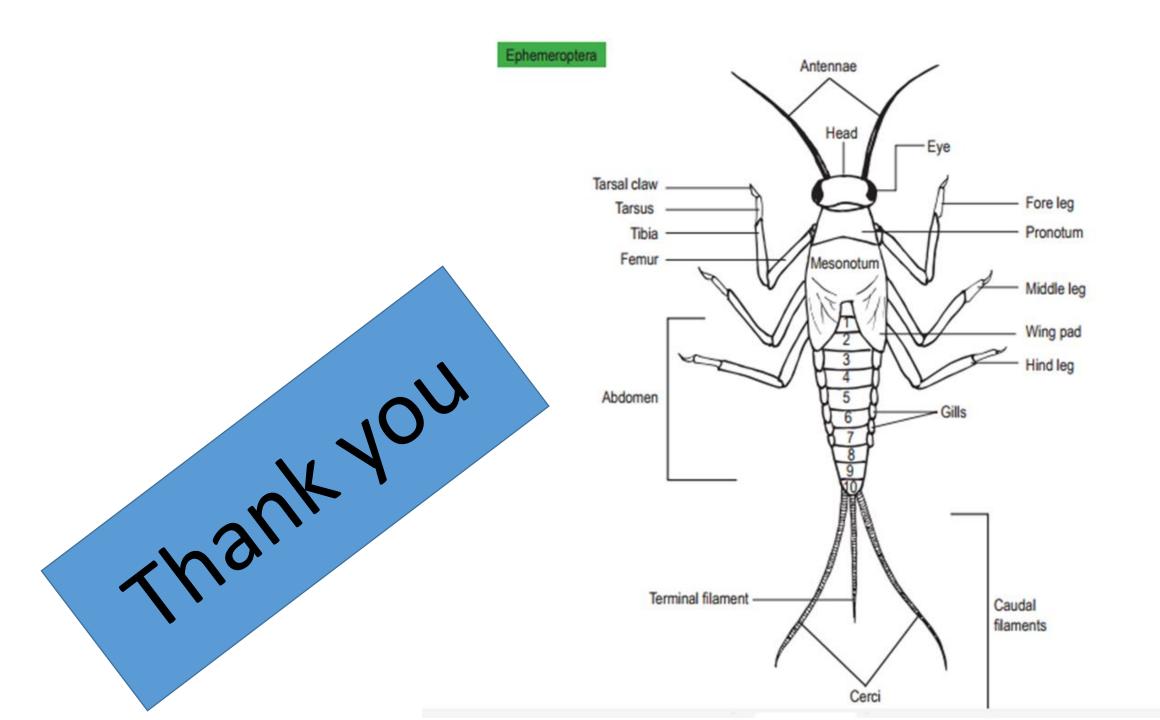

Colour banding of rivers is an easily understandable transformation of complex scientific information.


Water quality maps visualise the ecological status of rivers and thus **stimulate** politicians, decision makers, stake holders, water managers and the interested public to **start** actions.

River Quality Maps

RIVERS HANDED A GUIDE TO THE HEALTH OF RIVERS IN THE HINDU-KUSH HIMALAYA

Ram Devi Tachamo Shah | Deep Narayan Shah | Subodh Sharma


Available at:

Aquatic Ecology Centre (AEC) Kathmandu University (KU) Dhulikhel, Kavre, Nepal

Citizen Scientist

